Researchers create the first maps of two melatonin receptors essential for sleep

A better understanding of how these receptors work could enable scientists to design better therapeutics for sleep disorders, cancer and Type 2 diabetes.

An international team of researchers used an X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory to create the first detailed maps of two melatonin receptors that tell our bodies when to go to sleep or wake up, and guide other biological processes. A better understanding of how they work could enable researchers to design better drugs to combat sleep disorders, cancer and Type 2 diabetes. Their findings were published in two papers today in Nature.

The team, led by the University of Southern California, used X-rays from SLAC’s Linac Coherent Light Source (LCLS) to map the receptors, MT1 and MT2, bound to four different compounds that activate them: an insomnia drug, a drug that mixes melatonin with the antidepressant serotonin, and two melatonin analogs.

>Read more on the LCLS at SLAC website

Image: The researchers showed that both melatonin receptors contain narrow channels embedded in the cell’s fatty membranes. These channels only allow melatonin, which can exist happily in both water and fat, to pass through, preventing serotonin, which has a similar structure but is only happy in watery environments, from binding to the receptor. They also uncovered how some much larger compounds only target MT1 despite the structural similarities between the two receptors.
Credit: Greg Stewart/SLAC National Accelerator Laboratory