Coherent scattering imaging of skyrmions

Profiting from the coherence of synchrotron light, scientists have performed both reciprocal and real-space observations of magnetic skyrmion lattice deformation in a chiral magnet Co8Zn8Mn4.

The study of these materials is key for developing futures spintronic applications such as racetrack memory and logic devices.
The interplay between exchange interaction, antisymmetric Dzyaloshinskii-Moriya interaction, and magnetocrystalline anisotropy may cause incommensurate spin phases such as helical, conical, and Bloch-type skyrmion lattice states. The typical size of a magnetic skyrmion varies in a range from a few to a few hundred nanometers which makes them promising candidates for future spintronic applications such as skyrmion racetrack memory – with storage density higher than solid-state memory devices- and logic devices.
Coherent soft X-ray scattering and imaging are powerful tools to study the spin ordering in multicomponent magnetic compounds with element selectivity.
In this experiment, a skyrmion-hosting compound Co8Zn8Mn4 was investigated at cryogenic temperatures and applied high magnetic fields by a group of researchers from the Japanese RIKEN Center of Emergent Matter Science, National Institute for Materials Science, the Science and Technology Agency, University of Tokyo, the Institute of Materials Structure Science and Photon Factory, as well as from the ALBA Synchrotron.

Image: Coherent soft x-ray speckle patterns measured for Co8Zn8Mn4 sample at L3 absorption edge of Co at different temperatures 150 K, 120 K, 25 K (top panel, left to right) and applied field of 70 mT. White scale bar corresponds to 0.05 nm−1. Bottom panel shows micromagnetic simulations of the corresponding skyrmionic spin textures.