Killing two parasites with one stone

Each year Malaria affects 219 million people, causing almost half a million deaths. Crysptosporidiosis is the leading cause of diarrheal diseases in infants, leading to 200,000 deaths a year. An international team of scientists, led by researchers at the University of Dundee, have discovered a molecule which clears the parasites that cause these two illnesses. Their results are published in PNAS.

Malaria is a well-known disease caused by the parasites Plasmodium falciparum and Plamodium vivax and is the target of many available medications. However, the development of drug resistance has led the scientific community search for new therapeutic molecules which might provide for chemoprotection, prevention of transmission, and the treatment of relapsing malaria.
Like malaria, cryptosporidiosis is also a disease caused parasites, in this case Cryptosporidium hominis and Cryptosporidium parvum. Although it does not have the same ‘visibility as Malaria, Cryptosporidiosis is the leading cause worldwide of moderate-to-severe diarrheal diseases in infants and is estimated to lead to more than 200,000 deaths a year. The disease and is also associated with malnutrition, stunted growth, and cognitive-development problems in children. The currently approved drug, nitazoxanide, has poor efficacy, particularly in the case of immune-compromised patients and malnourished children, where there is no effective treatment.

>Read more on the ESRF website

Image: Binding modes of ligands bound to PfKRS1 and CpKRS. (A) PfKRS1:Lys:2 showing the binding mode of 2 (C atoms, gold) bound to the ATP site of PfKRS1 (PDB ID code 6AGT) superimposed upon PfKRS1:Lys:cladosporin (cladosporin C atoms, slate; PDB ID code 4PG3). (B) PfKRS1:5 showing binding mode of 5 bound to PfKRS1 (PDB ID code 6HCU). (See the full image: here)