Killing two parasites with one stone

Each year Malaria affects 219 million people, causing almost half a million deaths. Crysptosporidiosis is the leading cause of diarrheal diseases in infants, leading to 200,000 deaths a year. An international team of scientists, led by researchers at the University of Dundee, have discovered a molecule which clears the parasites that cause these two illnesses. Their results are published in PNAS.

Malaria is a well-known disease caused by the parasites Plasmodium falciparum and Plamodium vivax and is the target of many available medications. However, the development of drug resistance has led the scientific community search for new therapeutic molecules which might provide for chemoprotection, prevention of transmission, and the treatment of relapsing malaria.
Like malaria, cryptosporidiosis is also a disease caused parasites, in this case Cryptosporidium hominis and Cryptosporidium parvum. Although it does not have the same ‘visibility as Malaria, Cryptosporidiosis is the leading cause worldwide of moderate-to-severe diarrheal diseases in infants and is estimated to lead to more than 200,000 deaths a year. The disease and is also associated with malnutrition, stunted growth, and cognitive-development problems in children. The currently approved drug, nitazoxanide, has poor efficacy, particularly in the case of immune-compromised patients and malnourished children, where there is no effective treatment.

>Read more on the ESRF website

Image: Binding modes of ligands bound to PfKRS1 and CpKRS. (A) PfKRS1:Lys:2 showing the binding mode of 2 (C atoms, gold) bound to the ATP site of PfKRS1 (PDB ID code 6AGT) superimposed upon PfKRS1:Lys:cladosporin (cladosporin C atoms, slate; PDB ID code 4PG3). (B) PfKRS1:5 showing binding mode of 5 bound to PfKRS1 (PDB ID code 6HCU). (See the full image: here)

Coelacanth reveals new insights into skull evolution

A team of researchers, in conjunction with the National Museum of Natural History in Paris, presents the first observations of the development of the skull and brain in the living coelacanth Latimeria chalumnae.

The study, published in Nature, uses data from beamline ID19 and provides new insights into the biology of this iconic animal and the evolution of the vertebrate skull.
The coelacanth Latimeria is a marine fish closely related to tetrapods, four-limbed vertebrates including amphibians, mammals and reptiles. Coelacanths were thought to have been extinct for 70 million years, until the accidental capture of a living specimen by a South African fisherman in 1938. Eighty years after its discovery, Latimeria remains of scientific interest for understanding the origin of tetrapods and the evolution of their closest fossil relatives – the lobe-finned fishes.

>Read more on the European Synchrotron website

Image: Overall anterolateral view of the skull of the coelacanth foetus imaged on beamline ID19. The brain is in yellow.
Credit: H. Dutel et al.

Real-time characterisation of a new miniature-honeycomb fuel cell

A team from Imperial College has designed a miniature ceramic solid oxide fuel cell with excellent properties and together with scientists from the University College London, the company Finden and the ESRF, they characterised the cell as it works on beamline ID15A, confirming the great performances of the new device.

Ceramic fuel cells are considered as one of the most promising technologies for sustainable energy generation thanks to their interesting features, such as higher efficiency compared to conventional combustion-based power plants, high operating temperatures (600 – 1000 °C) that generate high-grade waste heat, and superior fuel flexibility that allows the direct utilization of hydrocarbons.

To date, ceramic fuel cells are used in a wide range of applications, including stationary power supply, combined heat and power system (CHP), auxiliary power units (APU), etc., and will continue receiving attention as shale gas and biofuels are becoming the premium fuel choices thanks to their low carbon footprint.

>Read more on the European Synchrotron website

Image: Micro-computed tomography and X-ray diffraction computed tomography images. XRD-CT maps of LSM (green), YSZ (red) and NiO (blue) have been overlaid on top of a micro-CT image collected at the same z position. The scale bar corresponds to 0.5 mm.
Credit: Tao Li.

ESRF installs first components of new Extremely Brilliant Source

The ESRF’s new Extremely Brilliant Source (EBS) is officially entering a new stage.

This week, the first components for the EBS – the world’s first, high-energy fourth-generation synchrotron light source – have been installed in its storage ring tunnel: a new milestone in the history of the European Synchrotron.
The first Extremely Brilliant Source girders have been installed in the ESRF’s storage ring tunnel. “It’s a great moment for all the teams,” said Pantaleo Raimondi, ESRF accelerator & source director. “Seeing the first girders installed on time is testament to the expertise, hard work and commitment of all involved for more than four years. EBS represents a great leap forward in progress and innovation for the new generation of synchrotrons.”

The start of installation is a key milestone in the facility’s 150M€ pioneering upgrade programme to replace its third-generation source with a revolutionary and award-winning machine that will boost the performance of its generated X-ray beams by 100, giving scientists new research opportunities in fields such as health, energy, the environment, industry and nanotechnologies. The EBS lattice has already been adopted by other synchrotrons around the world, and 18 upgrades following EBS’s example are planned, including in the United States, in Japan and in China.

>Read more on the European Synchrotron website

Image: The first 12-tonne EBS girder is lowered into the storage ring tunnel.

Clear view of “Robo” neuronal receptor opens door for new cancer drugs

During brain development, billions of neuron nerve cells must find accurate pathways in the brain in order to form trillions of neuronal circuits enabling us to enjoy cognitive, sensory and emotional wellbeing.

To achieve this remarkable precision, migrating neurons use special protein receptors that sense the environment around them and guide the way so these neurons stay on the right path. In a new study published in Cell, researchers from Bar-Ilan University and Tel Aviv University in Israel, EMBL Grenoble in France and University of Exeter in the UK report on their discovery of the intricate molecular mechanism that allows a key guidance receptor, “Robo”, to react to signals in its environment.

One of the most important protein signaling systems that guide neurons consists of the cell surface receptor “Robo” and its external guidance cue, “Slit”. “Slit and Robo can be identified in virtually all animals with a nervous system, from a 1 mm-long nematode all the way to humans,” explains researcher Yarden Opatowsky, associate professor and head of the Laboratory of Structural Biology at Bar-Ilan University and who led the research.

>Read more on the European Synchrotron website

Image: A surface representation of the crystal structure of the extracellular portion of human Robo2. The yellow region represents the domain where dimerisation takes place. Here, we see it blocked by the other domains, meaning dimerisation cannot take place and that Robo2 is inactivated.
Credit: Y. Opatowsky.

Women in science, or welcome to everyday life at the ESRF

The 11th February, it is the International Day of Women and Girls in Science.

Today, like every other day at the ESRF, women participate in enabling the scientific progress that takes place in our institute. Meet Isabelle, Sandrine, Marie, Anne-Lise and Blanka, five of our women engineers.

Today, their work is closely related to the Extremely Brilliant Source, or EBS, the world’s first high-energy 4th generation synchrotron under construction at the ESRF. The inside of the storage ring tunnel is unrecognisable. In the short space of time since dismantling started in January, cables and cooling circuits have been disconnected and removed, and the girders and vacuum chambers lifted out. It’s a busy scene and the hundreds of different tasks involved in the dismantling is organised with almost military precision. The woman conducting the troops is Isabelle Leconte, a job she shares with colleague Pascal Renaud.

Isabelle was originally trained in chemical engineering before specialising in vacuum and cryogenic techniques. She joined the ESRF vacuum group in 1991. After 20 years developing her skills in this area, she moved to the operation group to coordinate the maintenance works during shutdown periods and follow-up machine operation and reliability. Since October last year, she has been assigned 100% to the dismantling of EBS.

>Read more on the ESRF website

Image: Marie Spitoni prepares the alignment tools on the pre-mounted girders for EBS.
Credit: ESRF/S. Candé

Revealing the path of a metallodrug in a breast cancer cell

Some types of cancer cannot be treated with classical chemotherapy. Scientists from Inserm, CNRS, Sorbonne University, PSL university, University Grenoble Alpes and ESRF, the European Synchrotron, are working on a metallorganic molecule as an antitumor drug. Their research has given thorough insights into its mechanism in attacking cancer cells. This study is published in Angewandte Chemie.

Triple-negative breast cancer, which represents 10-20% of breast cancers, is not fuelled by hormones. In fact, it tests negative for estrogen and progesterone receptors and excess HER2 protein. This means that it does not respond to hormonal therapy and antibody medicines. Given that it is more aggressive and often has a higher grade than other types of breast cancer, the scientific community is relentlessly trying to find a treatment.

>Read more on the ESRF website

Image: X-ray fluorescence maps of potassium, an essential physiological element of the cell (K, in pink), and, osmium a constitutive element of the metallocifen (Os, in green), in hormone-independent breast cancer cells exposed to the osmocenyl-tamoxifen derivatives.
Credit: Sylvain Bohic.

Classic double-slit experiment in a new light

An international research team led by physicists from Collaborative Research Centre 1238, ‘Control and Dynamics of Quantum Materials’ at the University of Cologne has implemented a new variant of the basic double-slit experiment using resonant inelastic X-ray scattering at the European Synchrotron ESRF in Grenoble. This new variant offers a deeper understanding of the electronic structure of solids. Writing in Science Advances, the research group have now presented their results under the title ‘Resonant inelastic x-ray incarnation of Young’s double-slit experiment’.

The double-slit experiment is of fundamental importance in physics. More than 200 years ago, Thomas Young diffracted light at two adjacent slits, thus generating interference patterns (images based on superposition) behind this double slit. That way, he demonstrated the wave character of light. In the 20th century, scientists have shown that electrons or molecules scattered on a double slit show the same interference pattern, which contradicts the classical expectation of particle behaviour, but can be explained in quantum-mechanical wave-particle dualism. In contrast, the researchers in Cologne investigated an iridium oxide crystal (Ba3CeIr2O9) by means of resonant inelastic X-ray scattering (RIXS).

>Read more on the European Synchrotron website

Image: Beamline ID20, where the experiments took place.
Credit: P. Jayet.

A series of stories celebrating the periodic table’s 150th anniversary

The ESRF is celebrating the International Year of the Periodic Table, because its elements are omnipresent in the research done at the facility. We will publish a series of stories on different elements during the coming weeks. The first series is about the fascinating elements at the bottom of the periodic table.

See the series start here on the ESRF website

Image: Kristina Kvashnina in front of the periodic table. She is from the Helmoltz-Zentrum Dresden-Rossendorf (HZDR) but based at the Rossendorf Beamline (BM20) of ESRF in Grenoble.
Credits: Moulyneux

The secret to Rembrandt’s impasto unveiled

Rembrandt van Rijn revolutionized painting with a 3D effect using his impasto technique, where thick paint makes a masterpiece protrude from the surface. Thanks to the ESRF, three centuries later an international team of scientists led by the Materials Science and Engineering Department of TU Delft and the Rijksmuseum have found how he did it.

Impasto is thick paint laid on the canvas in an amount that makes it stand from the surface. The relief of impasto increases the perceptibility of the paint by increasing its light-reflecting textural properties. Scientists know that Rembrandt, epitome of the Dutch Golden Age, achieved the impasto effect by using materials traditionally available on the 17thcentury Dutch colour market, namely lead white pigment (a mixture of hydrocerussite Pb3(CO3)2.(OH)2 and cerussite PbCO3), and organic mediums (mainly linseed oil). The precise recipe was, however, unknown until today.

>Read more on the European Synchrotron (ESRF) website

Image: Scientist Marine Cotte on beamline ID21.
Credit: Steph Candé.

H2020 project PaNOSC officially started

The project PaNOSC, Photon and Neutron Open Science Cloud, is one of five cluster projects funded under the European H2020 programme.

The project, which will run until December 2022, is coordinated by the ESRF and brings together six strategic European research infrastructures.

Large-scale research infrastructures produce a huge amount of scientific data on a daily basis. For their storage and future (re)use, data need to managed according to the FAIR principles, i.e., be Findable, Accessible, Interoperable and Re-usable. The adaptation and development of both policies and technologies are key to making FAIR data a reality and to serving the broad set of stakeholders who will benefit from a coherent ecosystem of data services.

Under the headline “European Open Science Cloud (EOSC)”, projects covering a wide range of scientific disciplines from physics, astronomy, and life sciences, to social sciences and humanities, have been funded by the European Commission to build and develop the EOSC, which includes a comprehensive catalogue of services for the storage, management, analysis and re-use of research data.

>Read more on the ESRF website
>To know more about PaNOSC ( Photon and Neutron Open Science Cloud ) please read here

No beam for a while. #SeeUin2020

The 10th December 2018, marks a key date in the history of the ESRF.

Thirty years after the signature of the ESRF Convention, the beam has been stopped for the last time in the original storage ring. Now begins a 20-month shutdown to dismantle the storage ring that has served the international scientific community with bright and reliable X-rays for the last 30 years, to make way for a new and revolutionary X-ray source, the Extremely Brilliant Source (EBS) which will open to users in 2020.

Today, the EBS project is officially entering a new stage, which is the fruit of our hard work of the last four years. Our imagination, engineering design, quality control and assembly, guided by strict project management, has made it possible to start the swap in our tunnel between the old and the new storage ring. This is possible thanks to the great capability of ESRF staff”, said Francesco Sette, ESRF Director General.

>Read more on the ESRF website

ESRF celebrates 30 years of science, 30 years of international collaboration

The ESRF celebrates its 30th anniversary in the presence of the representatives of its 22 partner countries. This event looks back at ESRF’s scientific accomplishments but also on the role that the ESRF has played in fostering peaceful cross-border collaboration in Europe and beyond.

“Congratulations on 30 years of success; here is to 30 more to come,” said Carlos Moedas, European Commissioner for Research, Science and Innovation, in a video message.

“ESRF is a shining example of what can be achieved when people of different nationalities and cultures come together to pursue a common goal, to push back the frontiers of science,” said ESRF Director General Francesco Sette. “In drawing up the ESRF Convention, back in 1988, the ESRF’s founding fathers established a unique model for scientific and technological excellence. Today, with 22 partner countries, and by bringing together scientists from all over the world, the ESRF continues to demonstrate how science unites nations and contributes to addressing complex global challenges facing our society.”

2018 holds a particular significance for the ESRF as the facility celebrates its 30th anniversary. In 1988, 11 countries joined forces to create the first third-generation synchrotron light source: a dream became a reality. Thirty years later, the ESRF has broken records for the brilliance and stability of its X-ray beams, for its scientific output (over 32 000 publications, i.e., around 2 000 publications per year during the last ten years, and four Nobel prize laureates), and for the strength of its community of users (about 10 000 scientific visits per year with users from 50 different countries).

>Read more on the European Synchrotron (ESRF) website


New insight into high-temperature superconductors

Researchers have found evidence for an acoustic plasmon or “sound wave”, which has been predicted for layered systems and suggested to play a role in mediating high temperature superconductivity.

When electrical current propagates through a conducting material, energy dissipates due to the conductor’s electrical resistance. In a superconductor, however, the resistance can vanish completely if the material is cooled to extremely low temperatures. Such dissipationless supercurrent would be highly desirable for a plethora of electronic and technological applications, and has spawn decades of intense research dedicated to find materials with superconducting properties at elevated temperatures.

While all superconducting materials reported until the 1980’s had to be cooled below 30 K, the game changed in 1986, when the first superconductors based on copper oxide materials were discovered. These so-called high-temperature superconductors are composed of stacked layers of copper-oxygen planes and some show zero electrical resistance well above 100 K. By understanding the mechanisms mediating superconductivity in the copper oxides, the scientific community hopes to become able to devise novel materials that show zero resistance even at room temperature. However, a comprehensive understanding of these mechanisms has yet remained elusive. Nonetheless, superconductors are used already today in some technological applications, such as magnetic resonance imaging devices in the field of medicine. Future applications of room temperature superconductors could revolutionize the fields of electrical power storage and transmission, and enable rapid public transport by magnetically levitated trains.

>Read more on the European Synchrotron website

Image: Overview of the beamline ID32 at the ESRF.
Credits: P. Jayet

The ESRF CryoEM excels in its first year

In November 2017, a Titan Krios cryo-electron microscope (cryo-EM) was inaugurated at the ESRF, the European Synchrotron, France. Data collected on this cryo-EM features in a Nature publication describing the activation cycle of a serotonin receptor, which is targeted by medication against chemotherapy- and radiotherapy-induced nausea.

“This publication is a true reward for us: the first one in less than a year from inauguration and we hope this kind of rewards will grow in number”, explains Isai Kandiah, ESRF scientist who runs the facility. “It shows the revolution that cryo-EM is leading in structural biology”, she adds. Thanks to cryo-EM, researchers can now freeze biomolecules, including membrane proteins of high medical importance, in several different conformations in action and visualise each of these to atomic resolution. Cryo-EM thus allows researchers to produce snapshots revealing the dynamics of proteins when they interact with other molecules, information that is crucial both for a basic understanding of life’s chemistry and for the development of pharmaceuticals. The user programme of the cryo-electron microscope at the ESRF is run jointly with the European Molecular Biology Laboratory (EMBL), the Institut de Biologie Structurale (IBS) and the Institut Laue-Langevin (ILL).

The research in Nature is a result of an international collaboration of scientists from the Institute of Structural biology (IBS-mixed research unit CEA-CNRS-University Grenoble Alps), CEA, CNRS, the Institut Pasteur, the University of Lorraine (France), the University of Copenhagen (Denmark), the University of Illinois (US) and the biotech company Theranyx. The focus of the paper, featuring data from the ESRF cryo-EM, is the activation cycle of the 5-HT3 receptor, belonging to the family of serotonin receptors. These receptors are well-known because they influence various biological and neurological processes such as anxiety, appetite, mood, nausea, sleep and thermoregulation, among others. Unlike the other serotonin receptors, which are G protein-coupled receptors, 5-HT3 is a neurotransmitter-gated ion channel and changes its conformation during activation. It is present in the brain, as well as in the enteric nervous system, the peripheral nervous system that drives the digestive tract.

>Read more on the European Synchrotron website

Image: A close-up view of the Cryo-EM at the ESRF.
Credit: S. Candé.

The coolest high-energy synchrotron experiment

A French team of researchers has created and tested a cryostat where scientists can carry out the coldest experiments in the high-energy range in a synchrotron.

A photocopy of a drawing lies on the table of the control cabin of beamline ID12. It shows a cryostat and its heart: a spring-like metal tube and other components. Next to the drawing, lots of scribbles in different colours and on different dates, proof that this creation has been many years in the making. Steps away from the table, the real thing makes its appearance in the experimental hutch. Its majestic presence gives the beamline a new touch. It is the Très Basses Temperatures for miliKelvin (TBT-mK) cryostat.
Philippe Sainctavit, from the Institut de minéralogie, de physique des matériaux et de cosmochimie, together with Jean-Paul Kappler and Loïc Joly, from the Institut de Physique et Chimie des Matériaux de Strasbourg and synchrotron SOLEIL, are the fathers of this invention. “We started working on this project 20 years ago, and this is the third version of the machine”, explains Kappler. The team has installed the machine on ID12 for their experiments in magnetism. “Because this is quite a particular piece of equipment, we needed a very strong understanding with the beamline staff. Thanks to the fact that we were all in the same wavelength, the installation, which lasted 5 weeks spread throughout the year, went very smoothly. We could not have done this without the strong collaboration with the ID12 staff, namely Andrei Rogalev, Fabrice Wilhelm and Pascal Voisin”, explains Sainctavit.

>Read more on the European Synchrotron website