The secret to Rembrandt’s impasto unveiled

Rembrandt van Rijn revolutionized painting with a 3D effect using his impasto technique, where thick paint makes a masterpiece protrude from the surface. Thanks to the ESRF, three centuries later an international team of scientists led by the Materials Science and Engineering Department of TU Delft and the Rijksmuseum have found how he did it.

Impasto is thick paint laid on the canvas in an amount that makes it stand from the surface. The relief of impasto increases the perceptibility of the paint by increasing its light-reflecting textural properties. Scientists know that Rembrandt, epitome of the Dutch Golden Age, achieved the impasto effect by using materials traditionally available on the 17thcentury Dutch colour market, namely lead white pigment (a mixture of hydrocerussite Pb3(CO3)2.(OH)2 and cerussite PbCO3), and organic mediums (mainly linseed oil). The precise recipe was, however, unknown until today.

>Read more on the European Synchrotron (ESRF) website

Image: Scientist Marine Cotte on beamline ID21.
Credit: Steph Candé.

H2020 project PaNOSC officially started

The project PaNOSC, Photon and Neutron Open Science Cloud, is one of five cluster projects funded under the European H2020 programme.

The project, which will run until December 2022, is coordinated by the ESRF and brings together six strategic European research infrastructures.

Large-scale research infrastructures produce a huge amount of scientific data on a daily basis. For their storage and future (re)use, data need to managed according to the FAIR principles, i.e., be Findable, Accessible, Interoperable and Re-usable. The adaptation and development of both policies and technologies are key to making FAIR data a reality and to serving the broad set of stakeholders who will benefit from a coherent ecosystem of data services.

Under the headline “European Open Science Cloud (EOSC)”, projects covering a wide range of scientific disciplines from physics, astronomy, and life sciences, to social sciences and humanities, have been funded by the European Commission to build and develop the EOSC, which includes a comprehensive catalogue of services for the storage, management, analysis and re-use of research data.

>Read more on the ESRF website
>To know more about PaNOSC ( Photon and Neutron Open Science Cloud ) please read here

No beam for a while. #SeeUin2020

The 10th December 2018, marks a key date in the history of the ESRF.

Thirty years after the signature of the ESRF Convention, the beam has been stopped for the last time in the original storage ring. Now begins a 20-month shutdown to dismantle the storage ring that has served the international scientific community with bright and reliable X-rays for the last 30 years, to make way for a new and revolutionary X-ray source, the Extremely Brilliant Source (EBS) which will open to users in 2020.

Today, the EBS project is officially entering a new stage, which is the fruit of our hard work of the last four years. Our imagination, engineering design, quality control and assembly, guided by strict project management, has made it possible to start the swap in our tunnel between the old and the new storage ring. This is possible thanks to the great capability of ESRF staff”, said Francesco Sette, ESRF Director General.

>Read more on the ESRF website

ESRF celebrates 30 years of science, 30 years of international collaboration

The ESRF celebrates its 30th anniversary in the presence of the representatives of its 22 partner countries. This event looks back at ESRF’s scientific accomplishments but also on the role that the ESRF has played in fostering peaceful cross-border collaboration in Europe and beyond.

“Congratulations on 30 years of success; here is to 30 more to come,” said Carlos Moedas, European Commissioner for Research, Science and Innovation, in a video message.

“ESRF is a shining example of what can be achieved when people of different nationalities and cultures come together to pursue a common goal, to push back the frontiers of science,” said ESRF Director General Francesco Sette. “In drawing up the ESRF Convention, back in 1988, the ESRF’s founding fathers established a unique model for scientific and technological excellence. Today, with 22 partner countries, and by bringing together scientists from all over the world, the ESRF continues to demonstrate how science unites nations and contributes to addressing complex global challenges facing our society.”

2018 holds a particular significance for the ESRF as the facility celebrates its 30th anniversary. In 1988, 11 countries joined forces to create the first third-generation synchrotron light source: a dream became a reality. Thirty years later, the ESRF has broken records for the brilliance and stability of its X-ray beams, for its scientific output (over 32 000 publications, i.e., around 2 000 publications per year during the last ten years, and four Nobel prize laureates), and for the strength of its community of users (about 10 000 scientific visits per year with users from 50 different countries).

>Read more on the European Synchrotron (ESRF) website

 

New insight into high-temperature superconductors

Researchers have found evidence for an acoustic plasmon or “sound wave”, which has been predicted for layered systems and suggested to play a role in mediating high temperature superconductivity.

When electrical current propagates through a conducting material, energy dissipates due to the conductor’s electrical resistance. In a superconductor, however, the resistance can vanish completely if the material is cooled to extremely low temperatures. Such dissipationless supercurrent would be highly desirable for a plethora of electronic and technological applications, and has spawn decades of intense research dedicated to find materials with superconducting properties at elevated temperatures.

While all superconducting materials reported until the 1980’s had to be cooled below 30 K, the game changed in 1986, when the first superconductors based on copper oxide materials were discovered. These so-called high-temperature superconductors are composed of stacked layers of copper-oxygen planes and some show zero electrical resistance well above 100 K. By understanding the mechanisms mediating superconductivity in the copper oxides, the scientific community hopes to become able to devise novel materials that show zero resistance even at room temperature. However, a comprehensive understanding of these mechanisms has yet remained elusive. Nonetheless, superconductors are used already today in some technological applications, such as magnetic resonance imaging devices in the field of medicine. Future applications of room temperature superconductors could revolutionize the fields of electrical power storage and transmission, and enable rapid public transport by magnetically levitated trains.

>Read more on the European Synchrotron website

Image: Overview of the beamline ID32 at the ESRF.
Credits: P. Jayet

The ESRF CryoEM excels in its first year

In November 2017, a Titan Krios cryo-electron microscope (cryo-EM) was inaugurated at the ESRF, the European Synchrotron, France. Data collected on this cryo-EM features in a Nature publication describing the activation cycle of a serotonin receptor, which is targeted by medication against chemotherapy- and radiotherapy-induced nausea.

“This publication is a true reward for us: the first one in less than a year from inauguration and we hope this kind of rewards will grow in number”, explains Isai Kandiah, ESRF scientist who runs the facility. “It shows the revolution that cryo-EM is leading in structural biology”, she adds. Thanks to cryo-EM, researchers can now freeze biomolecules, including membrane proteins of high medical importance, in several different conformations in action and visualise each of these to atomic resolution. Cryo-EM thus allows researchers to produce snapshots revealing the dynamics of proteins when they interact with other molecules, information that is crucial both for a basic understanding of life’s chemistry and for the development of pharmaceuticals. The user programme of the cryo-electron microscope at the ESRF is run jointly with the European Molecular Biology Laboratory (EMBL), the Institut de Biologie Structurale (IBS) and the Institut Laue-Langevin (ILL).

The research in Nature is a result of an international collaboration of scientists from the Institute of Structural biology (IBS-mixed research unit CEA-CNRS-University Grenoble Alps), CEA, CNRS, the Institut Pasteur, the University of Lorraine (France), the University of Copenhagen (Denmark), the University of Illinois (US) and the biotech company Theranyx. The focus of the paper, featuring data from the ESRF cryo-EM, is the activation cycle of the 5-HT3 receptor, belonging to the family of serotonin receptors. These receptors are well-known because they influence various biological and neurological processes such as anxiety, appetite, mood, nausea, sleep and thermoregulation, among others. Unlike the other serotonin receptors, which are G protein-coupled receptors, 5-HT3 is a neurotransmitter-gated ion channel and changes its conformation during activation. It is present in the brain, as well as in the enteric nervous system, the peripheral nervous system that drives the digestive tract.

>Read more on the European Synchrotron website

Image: A close-up view of the Cryo-EM at the ESRF.
Credit: S. Candé.

The coolest high-energy synchrotron experiment

A French team of researchers has created and tested a cryostat where scientists can carry out the coldest experiments in the high-energy range in a synchrotron.

A photocopy of a drawing lies on the table of the control cabin of beamline ID12. It shows a cryostat and its heart: a spring-like metal tube and other components. Next to the drawing, lots of scribbles in different colours and on different dates, proof that this creation has been many years in the making. Steps away from the table, the real thing makes its appearance in the experimental hutch. Its majestic presence gives the beamline a new touch. It is the Très Basses Temperatures for miliKelvin (TBT-mK) cryostat.
Philippe Sainctavit, from the Institut de minéralogie, de physique des matériaux et de cosmochimie, together with Jean-Paul Kappler and Loïc Joly, from the Institut de Physique et Chimie des Matériaux de Strasbourg and synchrotron SOLEIL, are the fathers of this invention. “We started working on this project 20 years ago, and this is the third version of the machine”, explains Kappler. The team has installed the machine on ID12 for their experiments in magnetism. “Because this is quite a particular piece of equipment, we needed a very strong understanding with the beamline staff. Thanks to the fact that we were all in the same wavelength, the installation, which lasted 5 weeks spread throughout the year, went very smoothly. We could not have done this without the strong collaboration with the ID12 staff, namely Andrei Rogalev, Fabrice Wilhelm and Pascal Voisin”, explains Sainctavit.

>Read more on the European Synchrotron website

Molluscs use thermodynamics to create complex morphologies with exceptional properties

An international team has found how some molluscs create their complex structures.

Their work provides new tools for novel bioinspired and biomimetic bottom-up material design.
Nature serves as a source of inspiration for scientists and engineers thanks to the complex material architectures that make up some living organisms. These materials carry out essential functions, ranging from structural support and mechanical strength, to optical, magnetic or sensing capabilities. One example of this are molluscan shells, made of mineralized tissues organised in mineral-organic hierarchical functional architectures.

Molluscs appeared more than 500 million years ago, and they have developed hard and stiff mineralised outer shells for structural support and protection against predation. Their shells consist of mineral-organic composite structures made of calcium carbonates, mostly calcite and aragonite. The different shells exhibit a large variety of intricate three-dimensional assemblies with superior mechanical properties.

>Read more on the European Synchrotron website

How did humans live 5000 years ago?

Researchers from the Cyprus Institute, in collaboration with the Iranian Center of Archaeological Research, have worked around the clock for a week on ID16A to discover more about the lifestyle of our ancestors.

How did people live 5000 years ago? What did they eat? What can we learn of their health? Were they exposed to contaminants? To answer these questions with various techniques researchers first need to understand more about the preservation state of ancient human hair. In order to do this, a team from Cyprus Institute is  scanning hair remains found within burials at the ancient site of Shahr-I-Sokhta, in Iran.
In this urban settlement, at a crossroads of important ancient trade routes that later became part of the Silk Road, there was busy commercial and manufacturing activity around metal and precious materials as evidenced by the  artifacts found onsite during archaeological excavations. Archaeologists have also found remains of the inhabitants of the city dating to the 3rd millennium BC, and their state of preservation is remarkable. “The climate in this area is very arid and hot, and this has led to preservation of body tissues not often found with human skeletons, including hair”, explains Kirsi Lorentz, assistant professor at the Cyprus Institute.

>Read more on the European Synchrotron (ESRF) website

Image: Aerial view of the Shahr-I-Sokhta site, in Iran.
Credit: Media Rahmani

ESRF-EBS confirmed as landmark in ESFRI roadmap

On 11 September 2018, in Vienna, the European Strategy Forum on Research Infrastructures (ESFRI) presented the ESFRI Roadmap 2018 on Large Scale Research Infrastructures.

The ESRF-Extremely Brilliant Source (ESRF-EBS) is confirmed as a major landmark project. ESRF-EBS is a 150-million euro facility upgrade, over the period 2015-2022. With the construction of a brand-new storage ring, ESRF-EBS will be the world’s first high-energy fourth-generation synchrotron light source.

This year, the ESRF celebrates its 30th anniversary: 30 years of scientific discoveries, 30 years of innovation. In 1988, the ESRF made history as the world’s first third-generation synchrotron light source, producing X-rays 100 billion times brighter than the X-rays used in hospitals and providing unrivalled opportunities for scientists in the exploration of materials and living matter. For 30 years, the ESRF has aligned success after success, breaking records for its scientific output with over 30 000 publications and four Nobel prize laureates, as well as for the brilliance and stability of its X-ray beams. Today, the ESRF continues to lead the way with the Extremely Brilliant Source, a 150M€ project, funded by the 22 partner countries of the ESRF.

>Read more on the European Synchrotron (ESRF) website

Just like lego – studying flexible protein for drug delivery

Researchers from the Sapienza University of Rome and its spin-off company MoLiRom (Italy) are spending the weekend at the ESRF to study a protein that could potentially transport anticancer drugs.

Ferritin is a large spherical protein (20 times bigger than haemoglobin) that stores iron within its cavity in every organism. Just like a lego playset, Ferritin assembles and disassembles. It is also naturally targeted to cancer cells. These are the reasons why Ferritin is a great candidate as a drug-transport protein to fight cancer. An international team of scientists from “Sapienza” University of Rome and the SME MoLiRom (Italy) came to the ESRF to explore a special kind of ferritin that shows promising properties. “This is an archaebacterial ferritin that have transformed into a humanised ferritin to try to tackle cancer cells”, explains Matilde Trabuco, a scientist at the Italian SME MoLiRom.

The mechanism looks simple enough: “Ferritin has a natural attraction to cancer cells. If we encapsulate anti-cancer drugs inside it, it will act as a Trojan horse to go inside cells, then it will open up and deliver the drug”.

Ferritins have been widely used as scaffolds for drug-delivery and diagnostics due to their characteristic cage-like structure. Most ferritins are stable and disassemble only by a harsh pH jump that greatly limits the type of possible cargo. The humanised ferritin was engineered to combine assembly at milder conditions with specific targeting of human cancer cells.

 

>Read more on the European Synchrotron Website

 

Research gives clues to CO2 trapping underground

CO2 is an environmentally important gas that plays a crucial role in climate change.

It is a compound that is also present in the depth of the Earth but very little information about it is available. What happens to CO2 in the Earth’s mantle? Could it be eventually hosted underground? A new publication in Nature Communications unveils some key findings.

Carbon dioxide is a widespread simple molecule in the Universe. In spite of its simplicity, it has a very complex phase diagram, forming both amorphous and crystalline phases above the pressure of 40 GPa. In the depths of the Earth, CO2 does not appear as we know it in everyday life. Instead of being a gas consisting of molecules, it has a polymeric solid form that structurally resembles quartz (a main mineral of sand) due to the pressure it sustains, which is a million times bigger than that at the surface of the Earth.

Researchers have been long studying what happens to carbonates at high temperature and high pressure, the same conditions as deep inside the Earth. Until now, the majority of experiments had shown that CO2 decomposes, with the formation of diamond and oxygen. These studies were all focused on CO2 at the upper mantle, with a 70 GPa of pressure and 1800-2800 Kelvin of temperature.

>Read more on the European Synchrotron (ESRF) website

Picture: Mohamed Mezouar, scientist in charge of ID27, on the beamline.
Credit: S. Candé. 

Scientists unravel mechanism for body odour in armpits

British researchers from the University of York and the University of Oxford have shown the mechanism that leads to body odour in armpits by studying the molecular process at the ESRF and other lightsources.

Stepping into a cramped bus on a hot summer day can sometimes translate into having to hold your breath and a very unpleasant experience. Sweat production increases in hot weather, and, with it, body odour. Despite much research and antiperspirant deodorants, scientists still haven’t managed to selectively block body odour.

Researchers from the University of York and the University of Oxford have recently used the ESRF and Diamond Lightsource to find out what happens at a molecular level when we smell badly. They focused on the apocrine gland, which is found only in the armpit, genitalia and ear canal. It secrets an odourless lipid-rich viscous secretion, which is likely to play a role in scent generation, but it is not involved in thermoregulation.

It all comes down to bacteria. “The skin of our underarms provides a unique niche for bacteria,” explains investigator Gavin Thomas, professor in the department of biology at the University of York and co-leader of the study. “Through the secretions of various glands that open onto the skin or into hair follicles, this environment is nutrient-rich and hosts its own microbial community, the armpit microbiome, of many species of different microbes.”

>Read more on the European Synchrotron (ESRF) website

Image: Picture showing how body odour is produced in armpits.
Credit: University of York and Oxford. 

Dark-field X-ray microscopy provides surprising insight on ferroelectrics

Thanks to the unique capabilities of in-situ dark-field X-ray microscopy, scientists have now been able to see the complex structures hidden deep inside ferroelectric materials. The results, published today in Nature Materials, contradict previous studies in which only the surface was studied. This revolutionary new technique will be the main feature of a new beamline for the new EBS machine currently being built at the ESRF.

“Until now we could only see the surface of the material; dark-field x-ray microscopy is like creating a window to its interior”, explains Hugh Simons, assistant professor at the Technical University of Denmark and corresponding author of the study. “It provides incredible contrast for even the subtlest structures inside these materials, giving us a much clearer picture of how they work”, he adds.

Simons, together with the team of ID06 – the beamline where the technique is being developed – studied the ferroelectric material BaTiO3, which is used every day in cars, computers and mobile phones. By imaging their internal structure at the same time as they applied an electric field on it, they could see how these internal structures behave and change dynamically.

>Read more on the European Synchrotron (ESRF) website

Image: (extract) Crosssectional dark-field x-ray microscopy maps of the embedded BaTiO3 grain. (…) the reconstructed strain map reveals the structural relationship between domain clusters. Full picture here.
Credit: H. Simons.

Enlightening yellow in art

Scientists from the University of Perugia (Italy), CNR (Italy), University of Antwerp, the ESRF and DESY, have discovered how masterpieces degrade over time in a new study with mock-up paints carried out at synchrotrons ESRF and DESY. Humidity, coupled with light, appear to be the culprits.

The Scream by Munch, Flowers in a blue vase by Van Gogh or Joy of Life by Matisse, all have something in common: their cadmium yellow pigment. Throughout the years, this colour has faded into a whitish tone and, in some instances, crusts of the paint have arisen, as well as changes in the morphological properties of the paint, such as flaking or crumbling. Conservators and researchers have come to the rescue though, and they are currently using synchrotron techniques to study in depth these sulphide pigments and to find a solution to preserve them in the long run.

“This research has allowed us to make some progress. However, it is very difficult for us to pinpoint to what causes the yellow to go white as we don’t have all the information about how or where the paintings have been kept since they were done in the 19th century”, explains Letizia Monico, scientist from the University of Perugia and the CNR-ISTM. Indeed, limited knowledge of the environmental conditions (e.g., humidity, light, temperature…) in which paintings were stored or displayed over extended periods of time and the heterogeneous chemical composition of paint layers (often rendered more complex by later restoration interventions) hamper a thorough understanding of the overall degradation process.

>Read more on the ESRF website

Image: Some of the mock-up paints, prepared by Letizia Monico. Credits: C. Argoud.

The enigma of Rembrandt’s vivid white

Some of Rembrandt’s masterpieces are at the ESRF for some days, albeit only in minuscule form. The goal: to unveil the secrets of the artist’s white pigment.

Seven medical students surround a dead body while they attentively look at how the doctor is dissecting the deceased. The scene is set in a dark and gloomy environment, where even the faces of the characters show a grey tinge. Strangely, the only light in the scene is that coming from their white collars and the white sheet that partially covers the body. The vivid white creates a perplexing light-reflecting effect. Welcome to painting The anatomy lesson of Dr. Nicolaes Tulp, a piece of art displaying the baffling technique of the impasto, of which Rembrandt, its author, was a master.

Impasto is thick paint laid on the canvas in an amount that makes it stand from the surface. The relief of impasto increases the perceptibility of the paint by increasing its light-reflecting textural properties. Scientists know that Rembrandt achieved the impasto effect by using materials traditionally available on the 17th century Dutch colour market, namely the lead white pigment (mix of hydrocerussite Pb3(CO3)2.(OH)2 and cerussite PbCO3), chalk (calcite CaCO3) and organic mediums (mainly linseed oil). The precise recipe he used is, however, still unknown.

>Read more on the European Synchrotron website

Image: The anatomy lesson of Dr. Nicolaes Tulp, by Rembrandt.