Unusual compound found in Rembrandt’s The Night Watch

An international team of scientists from the Rijksmuseum, the CNRS, the ESRF the European Synchrotron, the University of Amsterdam and the University of Antwerp, have discovered a rare lead compound (named lead formate) in Rembrandt’s masterpiece The Night Watch. This discovery, which is a first in the history of the scientific study of paintings, provides new insight into 17th-century painting technique and the conservation history of the masterpiece. The study is published in Angewandte Chemie – International edition.

The Night Watch, painted in 1642 and displayed today in the Rijksmuseum Amsterdam (The Netherlands), is one of Rembrandt’s most important masterpieces and largest work of art. In the framework of the 2019 Operation Night Watch, the largest research and conservation project ever undertaken for Rembrandt’s masterpiece, an international research team joined forces to study how the painting materials react chemically and with time.

The team of scientists combined multi-scale imaging methods in order to chemically study the materials used by Rembrandt in The Night Watch. A X-ray scanning instrument developed at the University of Antwerp (Belgium) was applied directly to the painting, while tiny fragments taken from the painting were studied with synchrotron micro X-ray probes, at the ESRF, the European Synchrotron (France), and PETRA-III facility (Germany). These two types of analyses revealed the presence of an unexpected organo-metallic compound: lead formates. This compound had never been detected before in historic paintings: “In paintings, lead formates have only been reported once in 2020, but in model paintings (mock-up, fresh paints). And there lies the surprise: not only do we discover lead formates, but we identify them in areas where there is no lead pigment, white, yellow. We think that probably they disappear fast, this is why they were not detected in old master paintings until now”, explains Victor Gonzalez, CNRS researcher at the Supramolecular and Macromolecular Photophysics and Photochemistry (PPSM) laboratory (CNRS/ENS Paris-Saclay) and first author of the paper.

Read more on the ESRF website

Image: The Night Watch, Rembrandt van Rijn, 1642

Credit: Rijskmuseum Amsterdam

Scientists find the presence of fluids derived from subducted slab in the lower mantle

A team of scientists, led by University College Cork (Ireland) and Bayreuth Geoinstitute (Germany), has found proof of subducted slab fluids in the lower mantle by studying inclusions in diamonds using the ESRF.

In the Juína region, in the west of Brazil, a volcanic eruption brought diamonds from the interior of the Earth to the surface around 93 millions of years ago. Diamonds form perfect capsules so they retain the exact chemistry of material from the part of the Earth where they formed. Scientists are therefore studying these minerals to get information on the composition of the deep upper mantle, the transition zone and lower mantle.

Now a team led by University College Cork (Ireland) and Bayreuth Geoinstitute (Germany) has found that subducted material has penetrated into the sublithosperic mantle (below 250 km) by testing the oxidation state of several diamonds from the Juína region using the ESRF.

The oxidation state of the Earth’s mantle controls important parameters and processes, such as magma generation, speciation and mobility of fluids and melts in the Earth’s interior, deep carbon cycle, recycling of oceanic crust back into the mantle, chemical differentiation of the planet and many others.

It is generally considered that the main three layers of the Earth – its crust, mantle and core, represent profound changes in the oxidation state of iron from ferric (Fe3+) at the surface to mostly Fe2+ in the silicate minerals in the upper mantle, transition zone and the lower mantle and ultimately, to the Fe0 in the core. In short, the surface is very oxidised and the core is metallic so it is very reduced.

Read more on the ESRF website

Image: Georgios Aprilis, ESRF postdoc at ID18 beamline

Long COVID and pulmonary fibrosis better understood thanks to innovative techniques

An international team of researchers has revealed how scarring occurs in Long-COVID and pulmonary fibrosis using innovative blood biomarkers and X-ray technology. This study, published in The Lancet – eBioMedicine, contributes to the knowledge on the pathophysiology of severe COVID-19 and thus its treatment.

Long-COVID syndrome, or the origin of the long-term consequences of SARS-CoV-2 infection, is still not fully understood, more than two years after the onset of the pandemic. In particular, the long-term changes in lung tissue following severe COVID-19 disease pose significant limitations for many patients. Some of these patients continue to develop post-COVID pulmonary fibrosis, which is characterised by rapid scarring of the lung tissue.

Until now, the scientific community didn’t understand the underlying mechanisms of this scarring and of specific blood markers that can predict this process. Now, an international research team led by doctors and researchers at the Institute of Pathology at the RWTH Aachen University Hospital, the Hannover Medical School (MHH), HELIOS University Hospital in Wuppertal, and the University Medical Center Mainz, in collaboration with scientists at University College London (UCL) and the European Synchrotron (ESRF), has uncovered the mechanism that modifies the connective tissue of the lung in severe COVID-19. By combining the latest in imaging and molecular biology techniques this multidisciplinary team uncovered a mechanism by which the connective tissue of the lung is modified in severe COVID-19. They have demonstrated how COVID-19 changes the structure of the finest blood vessels in the lung and found molecular markers of this damage in the blood of patients that might ultimately help diagnose and treat the condition.

Read more on the ESRF website

Image: Two of the co-authors, Claire Walsh and Paul Tafforeau, during the scans and experiments at the ESRF, the European Synchrotron.

The history of one of the oldest objects in the Solar system unveiled

An international team of scientists have unveiled details of the history of the asteroid Ryugu, a truly ancient object in the Solar system, after the Hayabusa2 mission brought samples from this asteroid back to Earth. The ESRF was one of the institutes involved in sample characterization, on ID15A. The results are published in Science.

The asteroid Ryugu, located at 200 million kilometres from the Earth, is one of the most primitive objects of the solar system. The Japanese spacecraft Hayabusa2 explored it from 2018 until it came back to Earth two years later with minuscule multiple samples from the asteroid.

Two years later, and thanks to the international collaboration of institutes led by the Japan Aerospace Exploration Agency (JAXA), the first results on the analysis of the samples shed light on the history of Ryugu, from its formation to its collisional destruction.

Researchers used cosmochemical and physical methods at universities and institutes, including the ESRF and four other synchrotron radiation facilities in Japan, United States, and Europe.

The results combined with computer simulation have allowed scientists to picture the origins of Ryugu:  the Ryugu parent body accumulated about 2 million years after the formation of the solar system, and then heated up to about 50°C over the next 3 million years, resulting in chemical reactions between water and rock. The size of the impactor that destroyed the Ryugu parent body, which is about 100 km in diameter, is at most 10 km in diameter, and that the present-day Ryugu is composed of material from a region far from the impact point.

What the data explain

In particular, the seventeen Ryugu samples analysed contain particles (such as Ca- and Al-rich inclusions) that were formed in high-temperature environments (>1000°C). These high-temperature particles are thought to have formed near the Sun and then migrated to the outer solar system, where Ryugu was formed. This indicates that large-scale mixing of materials occurred between the inner and outer solar system at the time of its birth.

Based on the detection of the magnetic field left in the Ryugu samples, it is highly likely that the original asteroid from which the current Ryugu descended (Ryugu’s parent body) was born in the darkness of nebular gas, far from the Sun, where sunlight cannot reach.

The scientists also discovered liquid water trapped in a crystal in a sample. This water was carbonated water containing salts and organic matter, which was once present in the Ryugu parent body. Crystals shaped as coral reefs grew from the liquid water that existed inside Ryugu’s parent body. Rocks that were deeper underground contained more water than those in the surface.

Read more on the ESRF website

Image: A coloured view of the C-type asteroid 162173 Ryugu, seen by the ONC-T camera on board of Hayabusa2.

Credit: JAXA Hayabusa 2

New insight into how mammal ancestors became warm-blooded

The shapes of the ear canals of mammal ancestors reveal when warm-bloodedness evolved. The study published in Nature demonstrates that mammal ancestors became warm-blooded later than previously thought – nearly 20 million years later-, and that the acquisition of endothermy seems to have occurred very quickly in geological terms, in less than a million years. The international team of scientists, led by London’s Natural History Museum, the University of Lisbon’s Instituto Superior Técnico, the Field Museum in Chicago, and including the University of Witwatersrand, used the ESRF bright X-rays to scan delicate and dense fossils.

Read more on the ESRF website

Image: Comparison of bony labyrinth shape in two examples of warm-blooded (left) and cold-blooded (right) prehistoric mammal ancestors. © Romain David and Ricardo Araújo.

Antibody rigidity regulates immune activity

Scientists at the University of Southampton have gained unprecedented new insight into the key properties of an antibody needed to stimulate immune activity to fight off cancer, using the ESRF’s structural biology beamlines, among others.

The interdisciplinary study, published in Science Immunology, revealed how changing the flexibility of the antibody could stimulate a stronger immune response. The findings have enabled the team to design antibodies to activate important receptors on immune cells to “fire them up” and deliver more powerful anti-cancer effects. The researchers believe their findings could pave the way to improve antibody drugs that target cancer, as well as automimmune diseases.

In the study, the team investigated antibody drugs targeting the receptor CD40 for cancer treatment. Clinical development has been hampered by a lack of understanding of how to stimulate the receptors to the right level. The problem being that if antibodies are too active they can become toxic. Previous research by the same team had shown that a specific type of antibody called IgG2 is uniquely suited as a template for pharmaceutical intervention, since it is more active than other antibody types. However, the reason why it is more active had not been determined. What was known, however, is that the structure between the antibody arms, the so called hinges, changes over time.

This latest research harnesses this property of the hinge and explains how it works: the researchers call this process “disulfide-switching”. In their study, the team analysed the effect of modifying the hinge and used a combination of biological activity assays, structural biology, and computational chemistry to study how disulfide switching alters antibody structure and activity.

Read more on the ESRF website

Image: Flexibility of the monoclonal antibody F(ab) arms is conferred by the hinge region disulphide structure

Credit: C. Orr

It sucked to be the prey of ancient cephalopods

The Jurassic cephalopod Vampyronassa rhodanica, thought to be the oldest known ancestor of the modern-day vampire squid (Vampyroteuthis infernalis), was likely an active hunter – a mode of life that is in contrast with its opportunistic descendant. Scientists led by Sorbonne University came to this conclusion after analysing microtomographic data of this rare fossil, acquired at the ESRF and the Muséum national d’Histoire naturelle in Paris. The results are published today in Scientific Reports.

Vampyronassa rhodanica is thought to be one of the oldest relatives of the modern-day vampire squid (Vampyroteuthis infernalis), which is the only remaining living species of its family. This modern form lives in extreme deep ocean environments, often with little oxygen, and feeds on drifting organic matter. Like V. infernalis, the body of V. rhodanica was mostly made of soft tissue. As this rarely fossilises, little is known about the physical characteristics and evolutionary history of this family.

Despite the scarcity of fossil material from this family, Alison Rowe, from Sorbonne University and colleagues were able to study 3 well-preserved V. rhodanica specimens from La Voulte-sur-Rhône (Ardèche, France), dating to more than 164 million years ago. The eight-armed specimens were small, measuring around 10 cm in length, and had elongated oval-shaped bodies with two small fins.

They took them to the ESRF for non-destructive 3-D imaging: “We used synchrotron tomography at the ESRF in order to better identify the outlines of the various anatomical features”, says Rowe. However, the task was challenging, as Vincent Fernández, scientist at the ESRF, explains: “The fossils are on small slabs, which are very difficult to scan. On top of that, soft tissues are preserved but we needed phase contrast imaging to visualise the faint density variation in the data. The coherence of beamline ID19 was therefore very important to perform propagation phase-contrast computed-tomography and track all the minute details, such as the suckers and small fleshy extensions, called cirri”. 

Read more on the ESRF website

Image: Hypothesised reconstruction of Vampyronassa rhodanica

Credit: A. Lethiers, CR2P-SU

Scientists synthesise new materials at terapascal pressures for the first time

A team led by the University of Bayreuth (Germany) has synthesized, for the first time, new materials at terapascal pressures, using the ESRF’s ID11 and a unique diamond anvil cell. The results are published in the journal Nature.

Matter changes with variations of pressure and temperature, which allows the tuning of many material properties. These possibilities can shed light onto scientific questions, such as the fundamental understanding of the Universe or lead to targeted design of advanced materials. For example, today super-abrasive cubic Boron Nitride is used for grinding high-quality tool steels and artificial diamonds created using high temperature and high pressure are more prevalent than natural ones.

A team of scientists led by the University of Bayreuth has synthesized new materials at terapascal pressures using laser heating for the first time. The team used rhenium-nitrogen compounds as models to show that studies at pressures three times higher than pressure in the center of the Earth are now possible. Natalia Dubrovinskaya, professor at the University of Bayreuth and one of the corresponding authors of the paper, explains the relevance of these compounds:  “These novel rhenium-nitrogen compounds showed that at ultra-high pressures we can make materials that cannot be made at lower pressures/temperatures, and uncover fundamental rules of physics and chemistry. We found, for example, that due to a huge compression, rhenium behaves chemically in a similar way to iron”.

Read more on the ESRF website

Image: Schematic illustration of the Diamond Anvil Cell assembly

Credit: Timofey Fedotenko

What drives rechargeable battery decay?

How quickly a battery electrode decays depends on properties of individual particles in the battery – at first. Later on, the network of particles matters more.

Rechargeable lithium-ion batteries don’t last forever – after enough cycles of charging and recharging, they’ll eventually go kaput, so researchers are constantly looking for ways to squeeze a little more life out of their battery designs.

Now, researchers at the Department of Energy’s SLAC National Accelerator Laboratory and colleagues from Purdue University, Virginia Tech, and the European Synchrotron Radiation Facility have discovered that the factors behind battery decay actually change over time. Early on, decay seems to be driven by the properties of individual electrode particles, but after several dozen charging cycles, it’s how those particles are put together that matters more.

“The fundamental building blocks are these particles that make up the battery electrode, but when you zoom out, these particles interact with each other,” said SLAC scientist Yijin Liu, a researcher at the lab’s Stanford Synchrotron Radiation Lightsource and a senior author on the new paper. Therefore, “if you want to build a better battery, you need to look at how to put the particles together.”

Read more on the SLAC website

Image: A piece of battery cathode after 10 charging cycles. A machine-learning feature detection and quantification algorithm allowed researchers to automatically single out the most severely damaged particles of interest, which are highlighted in the image.

Credit: Courtesy Yijin Liu/SLAC National Accelerator Laboratory

Everyone remembers their 1st day at a light source

Light sources around the world share a common quality. They all have the ability to deliver a ‘wow factor’ when people first step inside. From young, bright eyed, tech-savvy children; scientists embarking on their first experiments; right through to retired visitors who spent their younger years without telephones or TVs. Synchrotron and X-ray Free Electron Lasers (XFELs) deliver science and technology on a grand scale. In this #LightSourceSelfie, Ida, a Phd Student at the ESRF, and Michael, who undertakes experiments at the European XFEL, both recall their first day. The words they use include exciting, overwhelming, exhilarating, busy and fascinating. Michael remembers feeling slightly in the way but, at a certain point, he started to ask questions. From that first day he learnt to, “Always ask questions. You can’t ask enough questions!”

The reign of the dinosaurs ended in spring

The asteroid that killed nearly all dinosaurs struck Earth during springtime.  An international team of scientists from the Vrije Universiteit (VU) Amsterdam (The Netherlands), Uppsala University (Sweden), Vrije Universiteit Brussel (Belgium) and the ESRF, the European Synchrotron (France), have determined when the meteorite crashed onto the Earth, after analysing the remains of fish that died just after the impact. Their results are published in the journal Nature today.

Around 66 million years ago, the Chicxulub meteorite crashed into the Earth, in what today is the Yucatán peninsula in Mexico, marking the demise of dinosaurs and end of the Cretaceous period. This mass extinction still puzzles scientists today, as it was one of the most selective in the history of life: all non-avian dinosaurs, pterosaurs, ammonites, and most marine reptiles disappeared, whilst mammals, birds, crocodiles, and turtles survived.

A team of scientists from the Vrije Universiteit, Uppsala University, and the ESRF have now shed light on the circumstances surrounding the diverse extinction across the different groups. The answers came from the bones of fish that died moments after the meteorite struck.

Read more on the ESRF website

Image: Melanie During points to a section of a Paddlefish dentary showing high bone cell density (i.e. summer)

Credit: Melanie During

An abundance of talents within the light source community

Monday Montage – Talents!

Our #LightSourceSelfies campaign has uncovered a wealth of talents among staff and users at light source facilities around the world. From skating to sculpting and painting to perennials, this Monday Montage illustrates the many hobbies and interests that those in our community enjoy in their spare time. With contributions from the ESRF, SESAME, LCLS and the European XFEL, this montage highlights the variety of activities that help people maintain a healthy work/life balance.

From conservator to researcher at the world’s brightest synchrotron

Light sources around the world are playing an increasingly important role in helping to uncover the past and protect historical objects for generations to come. Ida Fazlić is currently a PhD student at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Her research is focusing on the use of metal catalysts that are used to speed up the drying reactions of historical and industrial paints. Ida’s project will provide valuable information to collaborator Rijksmuseum on the use or misuse of dryers throughout history and up to the current day. Also there effect on the stability and aesthetic of the painted objects.

Ida was attracted to this area of work through her valuable experience of working as a conservator and restorer at the national gallery of Bosnia and Herzegovina. This work led her to question the chemical and physical processes that caused the degradation of the painted layers that she was seeing on a daily basis. Ida decided to study the crucial and very important role of science and technology in conservation of cultural heritage objects. For Ida, the best thing about working at a light source is that, “You have endless opportunities of going as far in your research as you want to go and in any direction that you want to go because at any moment you have the world’s most powerful material investigation techniques at hand.”

Unveiling the secrets of biofilms

Most bacteria have the ability to form communities, biofilms, that adhere to a wide variety of surfaces and are difficult to remove. This can lead to major problems, for example in hospitals or in the food industry. Now, an international team led by Hebrew University, Jerusalem, and the Technical University Dresden, has studied a model system for biofilms at the synchrotron radiation facilities BESSY II at HZB and the ESRF and found out what role the structures within the biofilm play in the distribution of nutrients and water.

Bacterial biofilms can thrive on almost all types of surfaces: We find them on rocks and plants, on teeth and mucous membranes, but also on contact lenses, medical implants or catheters, in the hoses of the dairy industry or drinking water pipes, where they can pose a serious threat to human health. Some biofilms are also useful, for example, in the production of cheese, where specific types of biofilms not only produce the many tiny holes, but also provide its delicious taste.

Tissue with special structures

“Biofilms are not just a collection of very many bacteria, but a tissue with special structures,” explains Prof. Liraz Chai from the Hebrew University in Jerusalem. Together, the bacteria form a protective layer of carbohydrates and proteins, the so-called extracellular matrix. This matrix protects the from disinfectants, UV radiation or desiccation and ensures that biofilms are really difficult to remove mechanically or eradicate chemically. However, the matrix is not a homogeneous sludge: “It’s a bit like in a leaf of plants, there are specialized structures, for example water channels residing in tiny wrinkles,” says Chai. But what role these structures play and what happens at the molecular level in a biofilm was not known until now. Together with Prof. Yael Politi, TU Dresden, an expert in the characterization of biological materials, Chai therefore applied for measurement time at the synchrotron radiation source BESSY II at HZB.

“The good thing about BESSY II is that we can map quite large areas. By combining X-ray diffraction with fluorescence, not only can we analyze the molecular structures across the biofilm very precisely, but we can also simultaneously track the accumulation of certain metal ions that are transported in the biofilm and learn about some of their biological roles” Yael Politi points out.

Read more on the HZB website

Image: When bacteria join together to form communities, they may build complex structures. The photo shows wild-type Bacillus subtilis biofilms.

Credit: © Liraz Chai/HUJI

Time to fly! One scientist’s story of being inspired and inspiring others

Shiva Shirani is from Iran and is currently completing a PhD at the University of Malaga. Shiva’s research area is Synchrotron X-ray imaging applied to cementitious material with the goal to decrease our CO2 footprint and protect the planet. Many participants in our #LightSourceSelfies campaign have talked about the need to overcome setbacks and failure. There will always be challenges but success will come. Shiva’s research ideas led to her being granted an OPEN SESAME Fellowship to become a young scientific visitor at ID19 tomography beamline at the ESRF. But prior to this, there were setbacks. Shiva’s story, which she tells with honestly and passion, charts these setbacks and how she eventually found people who believed in her ideas. People who helped Shiva find her “two wings to fly”.

One of these people was the late Claudio Ferrero, one of Shiva’s supervisors at the ESRF. Claudio recognised the unique way that Shiva shares her passion for science with the world via Twitter and Instagram and encouraged her to continue this inspirational science communication. In the early stages of planning the #LightSourceSelfies campaign, Lightsources.org and SESAME recognised this too! We were delighted when Shiva agreed to participate in our campaign and we are very grateful to the ESRF who subsequently helped Shiva with the filming.

Here we present Shiva Shirani’s #LightSourceSelfie!

SESAME’s #LightSourceSelfie featuring Shiva Shirani