New device squeezes samples with 1.6 billion atmospheres per second.
A new super-fast high-pressure device at DESY’s X-ray light source PETRA III allows scientists to simulate and study earthquakes and meteorite impacts more realistically in the lab. The new-generation dynamic diamond anvil cell (dDAC), developed by scientists from Lawrence Livermore National Laboratory (LLNL), DESY, the European Synchrotron Radiation Source ESRF, and the universities of Oxford, Bayreuth and Frankfurt/Main, compresses samples faster than any similar device before. The instrument can turn up the pressure at a record rate of 1.6 billion atmospheres per second (160 terapascals per second, TPa/s) and can be used for a wide range of dynamic high-pressure studies. The developers present their new device, that has already proven its capabilities in various materials experiments, in the journal Review of Scientific Instruments.
“For more than half a century the diamond anvil cell or DAC has been the primary tool to create static high pressures to study the physics and chemistry of materials under those extreme conditions, for example to explore the physical properties of materials at the center of the Earth at 3.5 million atmospheres,” said lead author Zsolt Jenei from LLNL. To simulate fast dynamic processes like earthquakes and asteroid impacts more realistically with high compression rates in the lab, Jenei’s team, in collaboration with DESY scientists, now developed a new generation of dynamically driven diamond anvil cell (dDAC), inspired by the pioneering original LLNL design, and coupled it with the new fast X-ray diffraction setup of the Extreme Conditions Beamline P02.2 at PETRA III.
>Read more on the PETRA III at DESY website
Image: Artist’s impression of a meteorite impact.
Credit: NASA