Beryllium configuration with neighbouring oxygen atoms revealed

High-pressure experiments prove 50-year-old theoretical prediction.

In high-pressure experiments at DESY’s X-ray light source PETRA III, scientists have observed a unique configuration of beryllium for the first time: At pressures nearly a million times the average atmospheric pressure, beryllium in a phosphate crystal acquires six neighbouring atoms instead of the usual four. This six-fold coordination had been predicted by theory more than 50 ago, but could not be observed until now in inorganic compounds. DESY scientist Anna Pakhomova and her collaborators report their results in the journal Nature Communications.
“Originally, chemistry textbooks stated that elements like beryllium from the second period of the periodic table could never have more than four neighbours, due to their electron configuration”, explains Pakhomova. “Then around 50 years ago theorists discovered that higher coordinations could actually be possible, but these have adamantly evaded experimental proof in inorganic compounds.” Inorganic compounds are typically those without carbon – apart from a few exceptions like carbon dioxide and carbon monoxide.

>Read more on the PETRA III at DESY website

Image: Transformation of the usual fourfold coordination of beryllium to five- and sixfold with increasing pressure. (Credit: DESY, Anna Pakhomova)