Visualizing electrostatic gating effects in two-dimensional heterostructures

Electronic and optoelectronic devices utilise electric fields to manipulate material properties, controlling band structures and band alignments across heterostructures that combine metals, semiconductors and insulators. With two-dimensional materials, 2D heterostructures (2DHS) can be fabricated with atomic precision by simply stacking layers. In these, applied out-of-plane electric fields are a powerful tool that can be used to degenerately dope semiconductors, modify electronic structure through the Stark effect, and alter band-alignments between layers. As a result, out-of-plane electric fields have been used to engineer functional architectures such as high-efficiency light-emitting diodes and tunnelling transistors, and to probe many-body phenomena.
Despite the fundamental importance of electric-field control over band structure, direct experimental measurements are challenging and have been limited. Whilst gate electrodes are routinely applied for electrical transport investigations, and many studies have reported electric-field dependent light-emission from 2DHS, these depend upon but do not directly reveal the single-particle electronic structure. Angle resolved photoemission spectroscopy (ARPES) has proven to be a powerful tool for probing the momentum-resolved valence band structure of 2D materials such as graphene and semiconducting transition metal dichalcogenides (MX2). But it is challenging to apply conventional ARPES, which typically averages over lengthscales > 100 µm, to 2DHS which are usually only a few µm across. Using the high spatial resolution and flux of the Spectromicroscopy beamline at Elettra, we have shown that submicrometre spatially resolved ARPES (µARPES) can determine band parameters and band alignments across 2DHS of mechanically exfoliated flakes. These heterostructures are similar to those used for optical spectroscopy and transport measurements, opening the way to study operating devices.

>Read more on the Elettra website

Illustration: Direct momentum-resolved electronic structure measurements of in-operando microelectronic devices.