Scientists have taken an important step towards finding a potential cure for the disease that causes strokes and heart attacks in seniors and increases the mortality rate of diabetic and chronic kidney disease patients.
Researchers from the University of McGill and SickKids Toronto in collaboration with Universite de Montreal developed a simplified laboratory model that mimics the formation of mineral deposits that harden arteries and leads to these devastating conditions.
They used the Canadian Light Source (CLS) at the University of Saskatchewan to understand the type of minerals that formed and how they develop on the arteries.
“The goal in developing our lab model is that it would help us understand the mineralization process. We can then mimic what happens, and use it to test hypotheses on why the minerals are forming and also test some drugs to find something that can stop it,” said lead researcher Dr. Marta Cerruti.
Her six-member team is focused on the poorly understood process of how minerals form and grow on elastin, a protein on artery walls that provides the elasticity needed for blood flow to the heart, said Cerruti, an associate professor in Materials Engineering at McGill.
The hypothesis is that calcium phosphate-containing minerals form inside the walls of arteries and then calcify into a bone-like substance that narrows arteries and causes them to lose elasticity crucial for blood flow.
>Read more on the Canadian Light Source website
Image: Marta Cerruti (left) and Ophelie Gourgas in a laboratory using a Raman machine.