In search of the perfect system

Researchers take a new approach to improve widely used biotechnology tool

The unique relationship between an essential vitamin and a purified bacterial protein has been used as a valuable tool in science and medicine for several decades. Together these two molecules, known as streptavidin and biotin, form a very strong and specific interaction that is invaluable for many biotechnological applications.

Labeling molecules with biotin and detecting them with streptavidin is a common part of many lab tests and has enabled many scientific discoveries in medicine. Streptavidin and biotin are as essential to lab technicians as hammers and nails are to a carpenter. The two molecules combine to form “molecular glue” for many of the tests used to diagnose infectious diseases like HIV, Hepatitis C and Lyme disease, to discover new proteins, viruses and bacteria, and to explore how molecules function in living organisms.

Read more on the Canadian Light Source website

Image: Trapped biotin: A crystal structure of the M88 mutein, determined at the CMCF beamline at CLS, reveals how the engineered disulphide formed between Cys49 and Cys86 (green spheres) partially block the exit pathway for biotin (magenta spheres). Credit: CLS

Powering the future of clean energy

Hydrogen gas can be used to power vehicles and has the potential to provide electricity to homes

The global quest for clean energy is championed by researchers in Canada who are focused on harnessing the potential of hydrogen.

The idea of the hydrogen economy was first proposed 50 years ago as a way to combat the negative effects of fossil fuels. Its future is the focus of new research from the University of Toronto’s Thermofluids for Energy and Advanced Materials (TEAM) lab, whose work relied on the Canadian Light Source (CLS) at the University of Saskatchewan to visualize performance.

Read more on the Canadian Light Source website

Image: Adam Webb (CLS), Sergey Gasilov (CLS), Manojkumar Balakrishnan (U of T), Jason Keonhag Lee (U of T), Denise Miller (CLS), Kieran Fahy (U of T) on the BMIT beamline at CLS.

Protecting Saskatchewan lakes from contamination

Using the Canadian Light Source synchrotron, a University of Saskatchewan-led research team has developed a method for monitoring uranium contaminants in mine tailings using samples from McClean Lake, SK.

While mining companies work to extract as much uranium as possible from processed ore, small amounts remain in the solid and liquid residue—called tailings—left over from the milling process.

To protect the downstream environment from potential impacts of the solid waste, the Canadian Nuclear Safety Commission requires companies to monitor the chemistry of uranium and other potentially harmful elements in their tailings facilities.

Numerous researchers have studied the chemistry of nickel, arsenic, selenium and molybdenum in Orano Canada’s tailings management facility at McClean Lake, but to date little was known about residual uranium. One of the challenges has been the extremely low concentrations of the element left after processing at Orano’s ore mill, which began operating in 1997.

Read more on the Canadian Light Source website

Image: Arthur Situm conducting research at SXRMB beamline. Photo by David Stobbe for USask.

Protecting our food from mercury contamination

One size does not fit all when it comes to using biochar for soil remediation, according to researchers who used the Canadian Light Source (CLS) at the University of Saskatchewan.

Mercury is used in a variety of industries, including textile manufacturing and gold and silver mining. When released into the environment, this highly toxic element causes widespread contamination of soil. As mercury enters rivers, lakes and oceans, it is converted to methylmercury, a neurotoxin that moves into the food chain through fish and seafood, posing a serious risk to human health.

Conventional methods of remediating mercury-contaminated soil – such as adding activated carbon – can be quite expensive to apply on a large scale. However, recent research has found that biochar, a charcoal produced by superheating agriculture or forestry waste in the absence of oxygen, holds promise as a low cost, “green” alternative.

Read more on the Canadian Light Source website

Image: The experimental set-up. Credit: Canadian Light Source

Creating the best TV screen yet

Breakthrough in blue quantum dot technology

There are many things quantum dots could do, but the most obvious place they could change our lives is to make the colours on our TVs and screens more pristine. Research using the Canadian Light Source (CLS) at the University of Saskatchewan is helping to bring this technology closer to our living rooms.

Quantum dots are nanocrystals that glow, a property that scientists have been working with to develop next-generation LEDs. When a quantum dot glows, it creates very pure light in a precise wavelength of red, blue or green. Conventional LEDs, found in our TV screens today, produce white light that is filtered to achieve desired colours, a process that leads to less bright and muddier colours.

Until now, blue-glowing quantum dots, which are crucial for creating a full range of colour, have proved particularly challenging for researchers to develop. However, University of Toronto (U of T) researcher Dr. Yitong Dong and collaborators have made a huge leap in blue quantum dot fluorescence, results they recently published in Nature Nanotechnology.

Read more on the Canadian Light Source website

Image: The blue quantum dot solution glows in a vial in a laboratory.

Longer-lasting cell phone batteries

Studies demonstrate the promise of phosphorene in electronics

Phosphorene is attracting a lot of attention lately in the energy and electronics industries, and for good reason. The theoretical capacity of the two-dimensional material—which consists of a single layer of black phosphorus—is almost seven times that of anode materials currently used in lithium-ion batteries. That could translate into real-world benefits such as significantly greater range for electric vehicles and longer battery life for cell phones.

There are a couple of strikes against phosphorene though. Commercially available black phosphorus is costly, at roughly $1000 per gram, and it breaks down quickly when it’s exposed to air. Researchers from Western University teamed up with scientists from the Canadian Light Source (CLS) at the University of Saskatchewan on a pair of studies to determine if they could address both issues.

Read more on the Canadian Light Source website

Image: Dr. Andy Sun at the Canadian Light Source.

How cellular proteins control cancer spread

New finding may help focus the search for anti-cancer drugs

A new insight into cell signals that control cancer growth and migration could help in the search for effective anti-cancer drugs. A team of researchers has revealed key biochemical processes that advance our understanding of colorectal cancer, the third most common cancer among Canadians.

Using the CMCF beamline at the Canadian Light Source (CLS) at the University of Saskatchewan, scientists from McGill University and Osaka University in Japan were able to unlock the behavior of an enzyme involved in the spread of cancer cells. The team found that there is a delicate interaction between the enzyme, PRL3, and another protein that moves magnesium in and out of cells. This interaction is crucial to colorectal cancer growth.

A new insight into cell signals that control cancer growth and migration could help in the search for effective anti-cancer drugs. A team of researchers has revealed key biochemical processes that advance our understanding of colorectal cancer, the third most common cancer among Canadians.

Using the CMCF beamline at the Canadian Light Source (CLS) at the University of Saskatchewan, scientists from McGill University and Osaka University in Japan were able to unlock the behavior of an enzyme involved in the spread of cancer cells. The team found that there is a delicate interaction between the enzyme, PRL3, and another protein that moves magnesium in and out of cells. This interaction is crucial to colorectal cancer growth.

Read more on the Canadian Light Source website

Image: Members of the Gehring research laboratory discussing the results of a protein purification.

Conserving Rita Letendre’s famous artworks

Research undertaken at the Canadian Light Source (CLS) at the University of Saskatchewan was key to understanding how to conserve experimental oil paintings by Rita Letendre, one of Canada’s most respected living abstract artists.

The work done at the CLS was part of a collaborative research project between the Art Gallery of Ontario (AGO) and the Canadian Conservation Institute (CCI) that came out of a recent retrospective Rita Letendre: Fire & Light at the AGO. During close examination, Meaghan Monaghan, paintings conservator from the Michael and Sonja Koerner Centre for Conservation, observed that several of Letendre’s oil paintings from the fifties and sixties had suffered significant degradation, most prominently, uneven gloss and patchiness, snowy crystalline structures coating the surface known as efflorescence, and cracking and lifting of the paint in several areas.

Read more on the Canadian Light Source website

Image: Rita Letendre. Victoire [Victory], 1961. Oil on canvas, Overall: 202.6 × 268 cm. Art Gallery of Ontario. Gift of Jessie and Percy Waxer, 1974, donated by the Ontario Heritage Foundation, 1988. © Rita Letendre L74.8.

Converting emissions into valuable fuel

Researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to improve their technique to convert CO2 into ethanol, a valuable chemical that can be used in a variety of industrial applications. Ethanol is also an attractive alternative fuel.

Ethanol has been proven to reduce emissions when compared to gasoline, but the renewable fuel is most often made of corn and wheat so there is a strong interest in non-food production methods. By capturing and converting carbon emissions to ethanol, the fuel’s environmental benefits could be multiplied.

The research team led by Prof. Ted Sargent at the University of Toronto focused on producing chemicals through CO2 conversion—such as ethanol, ethylene and methane—helping to transform harmful greenhouse gases into useful products. The group aims to produce the target chemicals, in this case ethanol, with high outputs and minimal energy inputs.

Read more on the Canadian Light Source website

Image: Xue Wang installing a membrane electrode assembly MEA cell for testing the performance of the N-CCu catalyst in CO2RR.

Promising new drug carrier could improve bone repair and cancer treatments

Researchers from Western University and the Shanghai Institute of Ceramics, Chinese Academy of Sciences used the Canadian Light Source (CLS) at the University of Saskatchewan to explore a promising drug carrier that could be used to deliver cancer treatments and therapeutics for severe injuries.

Their work advances drug carrier technology to make the carrier more compatible with our bodies. This allows the drug carrier to deliver the desired treatment precisely to a tumor, or to allow a slower release of the medicine. In a new paper published in The Royal Society of Chemistry, the team investigated using calcium phosphate as a potential drug carrier. Their approach uses phosphate from the biomolecule that stores and transports energy in our cells, which allows the carrier to be more compatible with the human body. Using this drug delivery system solves the limitations of other carriers, including biocompatibility and toxicity. Their carrier is highly compatible with our biological system, allowing for a better response while also being non-toxic.

“Calcium phosphate is an important biomaterial in bones and teeth. If you can use this material as a drug carrier then you don’t need to worry about what happens after it is done with delivery,” said Tsun-Kong (TK) Sham, Professor of Chemistry at Western University.

Read more on the Canadian Light Source website

Image: TK Sham, a Professor of Chemistry at Western University, using beamlines at the CLS.

Helping to neutralise greenhouse gases

Researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to create an affordable and efficient electrocatalyst that can transform CO2 into valuable chemicals. The result could help businesses as well as the environment.

Electrocatalysts help to collect CO2 pollution and efficiently convert it into more valuable carbon monoxide gas, which is an important product used in industrial applications. Carbon monoxide gas could also help the environment by allowing renewable fuels and chemicals to be manufactured more readily.

The end goal would be to try to neutralize the greenhouse gases that worsen climate change.

Precious metals are often used in electrocatalysts, but a team of scientists from Canada and China set out to find a less expensive alternative that would not compromise performance. In a new paper, the stability and energy efficiency of the team’s novel electrocatalyst offered promising results.

Read more on the Canadian Light Source website

Image : Schematic of an electrochemistry CO2-to-CO reduction reaction.

Helping our immune systems bypass antibiotic resistance

Over 700,000 people die each year due to drug-resistant diseases and this figure could increase to 10 million per year by 2050, according to a 2019 report.

As the search continues for new antibiotics to treat drug-resistant infections, a group of researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to address the problem from a different direction, by trying to weaken the ability of bacteria to develop resistance in the first place.

“The goal is to knock the bacterial cells down in terms of their resistance,” said Dr. Anthony Clarke, Professor and Dean of Science at Wilfrid Laurier University and adjunct professor at the University of Guelph. “We haven’t been successful over the last 30 years in finding new classes of antibiotics so, in the short term, we’re trying to weaken the cells so our own immune system can take over to fight infection.”

The target for his team’s work is peptidoglycan, which gives bacterial cell walls their rigidity. “Think of it as building a brick wall around the bacteria’s cells,” said Clarke. Since peptidoglycan can be broken down by lysozyme, an enzyme that exists in human immune systems, bacteria have developed strategies that block these enzymes by modifying their peptidoglycan, thereby “cementing the bricks in place,” and resisting our defences.

Read more on the Canadian Light Source website

Image: Dr. Clarke inspecting flasks of bacterial cultures in a student laboratory.

A highly promising sustainable battery for electric vehicles

McGill University researchers show that affordable materials could prove key for improving the batteries used in electric vehicles. The breakthrough was analyzed and confirmed with the Canadian Light Source (CLS) at the University of Saskatchewan. The research was funded by NSERC and supported by Hydro-Quebec.

As we move to greener technologies, the need for affordable, safe and powerful batteries is increasing constantly.

Battery-powered electric vehicles, for example, have much higher safety standards than our phones, and to travel the long distances required in Canada, lighter weight, high-energy capacity batteries make a world of difference.

Current rechargeable batteries tend to use expensive non-abundant metals, like cobalt, that carry an environmental and human rights toll under the poor labour conditions in mines in Africa. All are barriers to wider adoption.

The battery’s cathode, or positive electrode, is one of the best candidates for Li-ion battery improvement. “Cathodes represent 40 per cent of the cost of the batteries that we are using in our phones right now. They are absolutely crucial to improve battery performance and reduce dependency on cobalt,” says Rasool.

Read more on the Canadian Light Source website

Image : Lithium ion silicate nanocrystals coated in a conducting polymer known as PEDOT enhance battery performance even after 50 cycles, paving the way for high energy density cathodes.

Protecting chickens from heart disease

The health and welfare of broiler chickens may improve thanks to University of Saskatchewan (USask) researcher Andrew Olkowski and colleagues.

More chickens are raised worldwide than any other livestock animal, so improving their health outcomes would have a big impact.

The broiler chickens that are raised for meat were genetically selected to grow extremely fast, but they often suffer from heart diseases. Heart pump failure is a major health and welfare issue for the broiler chicken industry worldwide. Globally, economic losses associated with heart failure problems in broiler chickens amount to more than $1 billion annually.  

To understand why fast-growing broiler chickens suffer from heart problems, Olkowski and collaborators compared them with their slower-growing broiler counterparts, which have a much lower risk of heart failure, and with Leghorn chickens, which are resistant to heart failure.

Read more on the Canadian Light Source website

Image: University of Saskatchewan researcher Andrew Olkowski. 

Discovery could lead to stronger dental fillings…and less time at the dentist

An international team of researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to discover how to create stronger dental fillings. This is great news for the estimated 96 per cent of Canadians who will have to contend with at least one cavity during their adult lives.

For the first time, an international group of researchers led by Professor Owen Addison from King’s College London has been able to close a gap in the knowledge of photo-activated resin-based composites, commonly used in medical and dental applications.

In a recent paper published in Nature Communications, the team from Alberta, the United Kingdom, Norway and the United States described how they saw inside the resin matrix and gained insight into how filler particles interact with it during setting and influence the dental filling materials.

Read more on the Canadian Light Source website

Image : Prof. Owen Addison (right) with co-author Dr. Dan Romanyk, from the University of Alberta, at the MidIR beamline at the CLS, which they used for their experiment.

Human waste could help combat global food insecurity

Researchers from Cornell University’s College of Agriculture and Life Sciences and the Canadian Light Source (CLS) at the University of Saskatchewan have proven it is possible to create nitrogen-rich fertilizer by combining the solid and liquid components of human waste. The discovery, published recently in the journal Sustainable Chemistry and Engineering, has the potential to increase agriculture yields in developing countries and reduce contamination of groundwater caused by nitrogen runoff. 

Special separating toilets that were developed through the Reinvent the Toilet Challenge have helped solve long-standing sanitation problems in the slums of Nairobi, Kenya. However, the methods used to dispose of the two outputs failed to capture a key nutrient that local fields were starving for: nitrogen.

Cornell researchers Leilah Krounbi, a former PhD student, now at the Weizmann Institute in Israel, and Johannes Lehmann, senior author and professor of soil and crop sciences, wondered whether it might be possible to close the waste stream loop by recycling nitrogen from the urine, which was otherwise being lost to runoff.  While other researchers have engineered adsorbers using high-tech ingredients such as carbon nanotubes or activated carbons, Lehmann and his team wanted to know if they could do so with decidedly low-tech materials like human feces. Adsorbers are materials whose surfaces can capture and hold gas or liquids.

Read more on the Canadian Light Source website

Image: The researchers used the SGM beamline at the CLS to see how the chemistry in the nitrogen changed as it adsorbed ammonia and how well their material could make nitrogen available to plants if it was used as a fertilizer.