First high-speed hard X-ray microscopic movies at a free-electron laser

New technique enables investigation of industrially relevant materials and processes in motion.

A group of researchers has for the first time performed high-speed microscopy using an X-ray laser at the European XFEL in Schenefeld near Hamburg, Germany. The method allows for observations of processes that take place at speeds up to a few kilometres per second, paving the way for 3D microscopic movies of fast phenomena, with important potential industrial applications. Such movies could show what happens during complex processes with a resolution at the sub-micrometre level, which is less than the diameter of a human hair, while also teasing out hidden internal details. While most other applications of X-ray lasers are based on the short wavelength of their X-ray flashes, making images that reach atomic resolution possible, this use takes advantage of the penetrating properties of X-rays. The resulting images, which are on the microscopic rather than atomic scale, reveal the internal structures of complex processes such as fluid cavitation at high speed. The research, which has been published in the journal Optica, was led by scientists from the Center for Free-Electron Laser Science (CFEL) in Hamburg (a collaboration between DESY, Universität Hamburg, and the Max Planck Society) and the European XFEL and involves scientists from P.J. Šafárik University in Slovakia, Lund University in Sweden, Diamond Light Source and University College London in the UK, the Karlsruhe Institute of Technology in Germany, and the European Synchrotron Radiation Facility (ESRF) in France.

>Read more on the European XFEL website

Illustration: X-ray microscopic image of a bursting glass capillary, taken at the SPB/SFX instrument at the European XFEL. The image on the left shows the image produced from the experiment. The middle version shows the direction of the motion of debris, showing the spinning glass fragments and details of turbulence in the water. The right version shows the velocity of the debris in metres per second. Download to view video here.
Credit: European XFEL