A polymer coating makes Metal Organic Frameworks better at delivering drugs

Researchers use Synchrotron InfraRed microspectroscopy to study the dynamics of drug release from MOFs

How to efficiently deliver targeted, controlled and time-released doses of drugs is a significant challenge for biomedicine. Finding solutions to this challenge would result in substantial benefits for patients, including more effective drug therapy and fewer undesirable side effects. The porous nature of metal-organic frameworks (MOFs) makes them attractive candidates for drug-delivery systems as they can be tailored to hold and transport a variety of encapsulated guest molecules. To this end, employing MOFs as a drug delivery vehicle could offer potential solutions to accomplish the targeted and controlled release of anti-cancer drugs. However, understanding the precise chemical and physical transformations that MOFs undergo as these guest molecules are released is challenging. In work recently published in ACS Applied Materials & Interfacesresearchers from the University of Oxford, University of Turin, and Diamond Light Source used a combination of experimental and theoretical techniques to address this problem. They show how the combination of hydrophilic MOF-encapsulated drug with a hydrophobic polymeric matrix is a highly promising strategy to tune the drug release rate for optimal delivery. Their results demonstrate that high-resolution synchrotron InfraRed microspectroscopy is a powerful in situ technique for tracking the local chemical and physical transformations, revealing the dynamics underpinning the controlled release of drug molecules bound to the MOF pores.  

Read more on Diamond Light Source website

Image: Using synchrotron infrared radiation to track the drug release process from MOF/Polymer composites.