Lab Resolves Origin of Perovskite Instability

The following news release was originally issued by Princeton University. The story describes how researchers investigated the inorganic perovskite, cesium lead iodide, that has attracted wide attention for its potential in creating highly efficient solar cells. The researchers used x-ray diffraction performed at Princeton University and x-ray pair distribution function measurements performed at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Brookhaven National Laboratory, to find the source of thermodynamic instability in the perovskite. For more information about Brookhaven’s role in this research, please reach out to Cara Laasch, laasch@bnl.gov.  

Researchers in the Cava Group at the Princeton University Department of Chemistry have demystified the reasons for instability in an inorganic perovskite that has attracted wide attention for its potential in creating highly efficient solar cells.

Using single crystal X-ray diffraction performed at Princeton University and X-ray pair distribution function measurements performed at the Brookhaven National Laboratory, Princeton Department of Chemistry researchers detected that the source of thermodynamic instability in the halide perovskite cesium lead iodide (CsPbI3) is the inorganic cesium atom and its “rattling” behavior within the crystal structure.

Read more on NSLS II website

Image: Milinda Abeykoon, one of the lead beamline scientists at Brookhaven Lab, in preparation of the challenging experiments with Robert Cava’s team.