Investigating 3D-printed structures in real time

Scientists used ultrabright x-rays to watch the developing structure of a 3D-printed part evolve during the printing process.

A team of scientists working at the National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy’s (DOE’s) Brookhaven National Laboratory has designed an apparatus that can take simultaneous temperature and x-ray scattering measurements of a 3D printing process in real time, and have used it to gather information that may improve finished 3D products made from a large variety of plastics. This study could broaden the scope of the printing process in the manufacturing industry and is also an important step forward for Brookhaven Lab and Stony Brook University’s collaborative advanced manufacturing program.

The researchers were studying a 3D printing method called fused filament fabrication, now better known as material extrusion. In material extrusion, filaments of a thermoplastic—a polymer that softens when heated and hardens when cooled—are melted and deposited in many thin layers to build a finished structure. This approach is often called “additive” manufacturing because the layers add up to produce the final product.

Read more on the NSLS-II website

Image: The photo shows the research team, (from front to back) Yu-Chung Lin, Miriam Rafailovich, Aniket Raut, Guillaume Freychet, Mikhail Zhernenkov, and Yuval Shmueli (not pictured), placing the 3D printer into the chamber of the Soft Matter Interfaces (SMI) beamline at Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II).

Note: this photo was taken in March 2020, prior to current COVID-19 social distancing guidelines.

Lab Resolves Origin of Perovskite Instability

The following news release was originally issued by Princeton University. The story describes how researchers investigated the inorganic perovskite, cesium lead iodide, that has attracted wide attention for its potential in creating highly efficient solar cells. The researchers used x-ray diffraction performed at Princeton University and x-ray pair distribution function measurements performed at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Brookhaven National Laboratory, to find the source of thermodynamic instability in the perovskite. For more information about Brookhaven’s role in this research, please reach out to Cara Laasch,  

Researchers in the Cava Group at the Princeton University Department of Chemistry have demystified the reasons for instability in an inorganic perovskite that has attracted wide attention for its potential in creating highly efficient solar cells.

Using single crystal X-ray diffraction performed at Princeton University and X-ray pair distribution function measurements performed at the Brookhaven National Laboratory, Princeton Department of Chemistry researchers detected that the source of thermodynamic instability in the halide perovskite cesium lead iodide (CsPbI3) is the inorganic cesium atom and its “rattling” behavior within the crystal structure.

Read more on NSLS II website

Image: Milinda Abeykoon, one of the lead beamline scientists at Brookhaven Lab, in preparation of the challenging experiments with Robert Cava’s team.

Apart Yet Together: Virtual 2020 NSLS-II & CFN Users’ Meeting

A record-breaking number of attendees gathered virtually at the NSLS-II & CFN Users’ Meeting to discuss the most recent developments in photon science and nanoscience

Upton—From May 18 to 20, more than 1500 registered attendees from 37 countries around the world participated in the first-ever virtual joint Users’ Meeting of the Center for Functional Nanomaterials (CFN) and the National Synchrotron Light Source II (NSLS-II)—two U.S. Department of Energy (DOE) Office of Science User Facilities at DOE’s Brookhaven National Laboratory. Holding the annual joint Users’ Meeting is a long-standing tradition at Brookhaven Lab, where attendees enjoy scientific discourse during the warm spring days on Long Island. 

While the Coronavirus pandemic limited the Lab’s ability to bring attendees on site for 2020, it presented a new opportunity for the conference organizers to hold a virtual Users’ Meeting, which attracted five times more attendees than ever before. The meeting included eight workshops, each held in a virtual meeting rooms with record-breaking numbers of attendees, ranging from 120 to more than 400. The meeting’s plenary session included more than 600 attendees listening and asking questions. 

Read more on the NSLS-II website

Image: NSLS-II aerial

Cell membrane proteins imaged in 3-D

Scientists used lanthanide-binding tags to image proteins at the level of a cell membrane, opening new doors for studies on health and medicine.

A team of scientists including researchers at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory—have demonstrated a new technique for imaging proteins in 3-D with nanoscale resolution. Their work, published in the Journal of the American Chemical Society, enables researchers to identify the precise location of proteins within individual cells, reaching the resolution of the cell membrane and the smallest subcellular organelles.
“In the structural biology world, scientists use techniques like x-ray crystallography and cryo-electron microscopy to learn about the precise structure of proteins and infer their functions, but we don’t learn where they function in a cell,” said corresponding author and NSLS-II scientist Lisa Miller. “If you’re studying a particular disease, you need to know if a protein is functioning in the wrong place or not at all.”
The new technique developed by Miller and her colleagues is similar in style to traditional methods of fluorescence microscopy in biology, in which a molecule called green fluorescent protein (GFP) can be attached to other proteins to reveal their location. When GFP is exposed to UV or visible light, it fluoresces a bright green color, illuminating an otherwise “invisible” protein in the cell.

>Read more on the National Synchrotron Light Source II (NSLS-II) website

Image: Ultrabright x-rays revealed the concentration of erbium (yellow) and zinc (red) in a single E.coli cell expressing a lanthanide-binding tag and incubated with erbium.

Five U.S. light sources form data solution task force

New collaboration between scientists at the five U.S. Department of Energy light source facilities will develop flexible software to easily process big data.

Light source facilities are tackling some of today’s biggest scientific challenges, from designing new quantum materials to revealing protein structures. But as these facilities continue to become more technologically advanced, processing the wealth of data they produce has become a challenge of its own. By 2028, the five U.S. Department of Energy (DOE) Office of Science light sources, will produce data at the exabyte scale, or on the order of billions of gigabytes, each year. Now, scientists have come together to develop synergistic software to solve that challenge.
With funding from DOE for a two-year pilot program, scientists from the five light sources have formed a Data Solution Task Force that will demonstrate, build, and implement software, cyberinfrastructure, and algorithms that address universal needs between all five facilities. These needs range from real-time data analysis capabilities to data storage and archival resources.
“It is exciting to see the progress that is being made by all the light sources working together to produce solutions that will be deployed across the whole DOE complex,” said Stuart Campbell, leader of the data acquisition, management and analysis group at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science user facility at DOE’s Brookhaven National Laboratory.

>Read more on the NSLS-II at Brookhaven National Lab

>Explore the other member facilities of the task force and read about their latest science news: Advanced Light Source (ALS), Advanced Photon Source (APS), Stanford Synchrotron Radiation Lightsource (SSRL), Linac Coherent Light Source (LCLS).

Image: Members of the task force met at NSLS-II for a project kickoff meeting in August of 2019.

Cathode ‘defects’ improve battery performance

A counterintuitive finding revealed by high-precision powder diffraction analyses suggests a new strategy for building better batteries

UPTON, NY—Engineers strive to design smartphones with longer-lasting batteries, electric vehicles that can drive for hundreds of miles on a single charge, and a reliable power grid that can store renewable energy for future use. Each of these technologies is within reach—that is, if scientists can build better cathode materials.

To date, the typical strategy for enhancing cathode materials has been to alter their chemical composition. But now, chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have made a new finding about battery performance that points to a different strategy for optimizing cathode materials. Their research, published in Chemistry of Materials and featured in ACS Editors’ Choice, focuses on controlling the amount of structural defects in the cathode material.

“Instead of changing the chemical composition of the cathode, we can alter the arrangement of its atoms,” said corresponding author Peter Khalifah, a chemist at Brookhaven Lab and Stony Brook University.

>Read more on the NSLS-II at Brookhaven Lab website

Image: Corresponding author Peter Khalifah (left) with his students/co-authors Gerard Mattei (center) and Zhuo Li (right) at one of Brookhaven’s chemistry labs.

NSLS-II achieves design beam current of 500 milliamperes

Accelerator division enables new record current during studies.

The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory is a gigantic x-ray microscope that allows scientists to study the inner structure of all kinds of material and devices in real time under realistic operating conditions. The scientists using the machine are seeking answers to questions including how can we built longer lasting batteries; when life started on our planet; and what kinds of new materials can be used in quantum computers, along with many other questions in a wide variety of research fields.

The heart of the facility is a particle accelerator that circulates electrons at nearly the speed of light around the roughly half-a-mile-long ring. Steered by special magnets within the ring, the electrons generate ultrabright x-rays that enable scientists to address the broad spectrum of research at NSLS-II.

Now, the accelerator division at NSLS-II has reached a new milestone for machine performance. During recent accelerator studies, the team has been able to ramp up the machine to 500 milliamperes (mA) of current and to keep this current stable for more than six hours. Similar to a current in a river, the current in an accelerator is a measure of the number of electrons that circulate the ring at any given time. In NSLS-II’s case, a higher electron current opens the pathway to more intense x-rays for all the experiments happening at the facility.

>Read more on the NSLS-II at Brookhaven Lab website

Image: The NSLS-II accelerator division proudly gathered to celebrate their recent achievement. The screen above them shows the slow increase of the electron current in the NSLS-II storage ring and its stability.

NSLS-II celebrates its 5th anniversary

In just five years, 28 beamlines came online, over 1,800 different experiments ran, and nearly 3,000 scientists conducted research at the National Synchrotron Light Source II.

On this day five years ago, the National Synchrotron Light Source II (NSLS-II) achieved “first light”—its first successful delivery of x-ray beams. Signaling the start of operations at NSLS-II—one of the world’s most advanced synchrotron light sources—Oct. 23, 2014 marked a new era of synchrotron science.

“It is astonishing to me how much we have accomplished in just five years,” said NSLS-II Director John Hill. “Every day when I come to work, I am proud of what we have achieved through the expertise, dedication and passion that everyone here brings to NSLS-II.”

>Read more on the NSLS-II at Brookhaven Lab website

Image: An aerial view of NSLS-II. The facility is large enough to fit Yankee Stadium inside its half-mile-long ring.


NSLS-II scientist named DOE Office of Science Distinguished Fellow

Scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have garnered two out of five “Distinguished Scientists Fellow” awards announced today by the DOE’s Office of Science.

Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and José Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields. (…)

José Rodriguez (NSLS-II)

For discoveries of the atomic basis of surface catalysis for the synthesis of sustainable fuels, and for significantly advancing in-situ methods of investigation using synchrotron light sources.”

Rodriguez will devote his funding to the development and construction of new tools for performing extremely rapid, time-resolved measurements to track the reaction mechanisms of catalytic processes as they occur under variable conditions—like those encountered during real-world reactions important to energy applications. These include processes on metal-oxide catalysts frequently used in the production of clean fuels and other “green” chemicals through hydrogenation of carbon monoxide and carbon dioxide, or the conversion of methane to hydrogen.

“At a microscopic level, the structure of a catalyst and the chemical environment around the active sites—where chemical bonds are broken and reformed as reactants transform into new products—change as a function of time, thus determining the reaction mechanism,” said Rodriguez. “We can learn a lot about the nature of the active sites under steady-state conditions, with no variations in temperature, pressure, and reaction rate. But to really understand the details of the reaction mechanism, we need ways to track what happens under transient or variable conditions. This funding will allow us to build new instrumentation that works with existing capabilities so we can study catalysts under variable conditions—and use what we learn to improve their performance.”

>Read more on the NSLS-II website

Smarter experiments for faster materials discovery

Scientists created a new AI algorithm for making measurement decisions; autonomous approach could revolutionize scientific experiments.

A team of scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and Lawrence Berkeley National Laboratory designed, created, and successfully tested a new algorithm to make smarter scientific measurement decisions. The algorithm, a form of artificial intelligence (AI), can make autonomous decisions to define and perform the next step of an experiment. The team described the capabilities and flexibility of their new measurement tool in a paper published on August 14, 2019 in Nature Scientific Reports.

From Galileo and Newton to the recent discovery of gravitational waves, performing scientific experiments to understand the world around us has been the driving force of our technological advancement for hundreds of years. Improving the way researchers do their experiments can have tremendous impact on how quickly those experiments yield applicable results for new technologies.

>Read more on the NSLS-II at Brookhaven Lab website.

Image: (From left to right) Kevin Yager, Masafumi Fukuto, and Ruipeng Li prepared the Complex Materials Scattering (CMS) beamline at NSLS-II for a measurement using the new decision-making algorithm, which was developed by Marcus Noack (not pictured).

Enhancing Materials for Hi-Res Patterning to Advance Microelectronics

Scientists at Brookhaven Lab’s Center for Functional Nanomaterials created “hybrid” organic-inorganic materials for transferring ultrasmall, high-aspect-ratio features into silicon for next-generation electronic devices.

To increase the processing speed and reduce the power consumption of electronic devices, the microelectronics industry continues to push for smaller and smaller feature sizes. Transistors in today’s cell phones are typically 10 nanometers (nm) across—equivalent to about 50 silicon atoms wide—or smaller. Scaling transistors down below these dimensions with higher accuracy requires advanced materials for lithography—the primary technique for printing electrical circuit elements on silicon wafers to manufacture electronic chips. One challenge is developing robust “resists,” or materials that are used as templates for transferring circuit patterns into device-useful substrates such as silicon.

>Read more on the NSLS-II at Brookhaven Lab website

Image: (Left to right) Ashwanth Subramanian, Ming Lu, Kim Kisslinger, Chang-Yong Nam, and Nikhil Tiwale in the Electron Microscopy Facility at Brookhaven Lab’s Center for Functional Nanomaterials. The scientists used scanning electron microscopes to image high-resolution, high-aspect-ratio silicon nanostructures they etched using a “hybrid” organic-inorganic resist.

Brookhaven Lab and University of Delaware begin joint initiative

Through this partnership, scientists from both institutions will conduct collaborative research on rice soil chemistry and quantum materials.

The U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and the University of Delaware (UD) have begun a two-year joint initiative to promote collaborative research in new areas of complementary strength and strategic importance. Though Brookhaven Lab and UD already have a tradition of collaboration, especially in catalysis, this initiative encourages partnerships in strategic areas where that tradition does not yet exist. After considering several potential areas, a committee from Brookhaven and UD selected two projects—one on rice soil chemistry and the other on quantum materials—for the new initiative. For each project, one graduate student based at Brookhaven and one graduate student from UD will work with and be supervised by a principal investigator from each respective institution. The research, to start in October 2019, is funded separately by the two institutions. Brookhaven funding is provided through its Laboratory-Directed Research and Development program, which promotes highly innovative and exploratory research that supports the Lab’s mission and areas for growth.

>Read more on the NSLS-II at Brookhaven Lab website

Image: Principal investigators from Brookhaven Lab and the University of Delaware (UD) will collaborate on two different research projects through a new joint initiative. Brookhaven’s Peter Johnson (left) and UD’s Stephanie Law (second from left) will measure the energy level spectrum of a topological insulator, a new type of material that behaves as an insulator internally but as a conductor on the surface; Brookhaven’s Ryan Tappero (second from the right) and UD’s Angelia Seyfferth (right) will study how toxic and nutrient metals are distributed in rice grain.

Creating ‘movies’ of thin film growth at NSLS-II


Coherent x-rays at NSLS-II enable researchers to produce more accurate observations of thin film growth in real time.

From paint on a wall to tinted car windows, thin films make up a wide variety of materials found in ordinary life. But thin films are also used to build some of today’s most important technologies, such as computer chips and solar cells. Seeking to improve the performance of these technologies, scientists are studying the mechanisms that drive molecules to uniformly stack together in layers—a process called crystalline thin film growth. Now, a new research technique could help scientists understand this growth process better than ever before.
Researchers from the University of Vermont, Boston University, and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have demonstrated a new experimental capability for watching thin film growth in real-time. Using the National Synchrotron Light Source II (NSLS-II)—a DOE Office of Science User Facility at Brookhaven—the researchers were able to produce a “movie” of thin film growth that depicts the process more accurately than traditional techniques can. Their research was published on June 14, 2019 in Nature Communications.

>Read more on the NSLS-II website

Image: Co-authors Peco Myint (BU) and Jeffrey Ulbrandt (UVM) are shown at NSLS-II’s CHX beamline, where the research was conducted.


Scientists design organic cathode for high performance batteries

The new, sulfur-based material is more energy-dense, cost-effective, and environmentally friendly than traditional cathodes in lithium batteries.

Researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have designed a new, organic cathode material for lithium batteries. With sulfur at its core, the material is more energy-dense, cost-effective, and environmentally friendly than traditional cathode materials in lithium batteries. The research was published in Advanced Energy Materials on April 10, 2019.

Optimizing cathode materials

From smartphones to electric vehicles, the technologies that have become central to everyday life run on lithium batteries. And as the demand for these products continues to rise, scientists are investigating how to optimize cathode materials to improve the overall performance of lithium battery systems.
“Commercialized lithium-ion batteries are used in small electronic devices; however, to accommodate long driving ranges for electric vehicles, their energy density needs to be higher,” said Zulipiya Shadike, a research associate in Brookhaven’s Chemistry Division and the lead author of the research. “We are trying to develop new battery systems with a high energy density and stable performance.”

>Read more on the NSLS-II website

Image: Lead author Zulipiya Shadike (right) is pictured at NSLS-II’s XPD beamline with lead beamline scientist and co-author Sanjit Ghose (left).

Nanoscale sculpturing leads to unusual packing of nanocubes

Cube-shaped nanoparticles with thick shells of DNA assemble into a never-before-seen 3-D “zigzag” pattern that breaks orientational symmetry; understanding such nanoscale behavior is key to engineering new materials with desired organizations and properties.

From the ancient pyramids to modern buildings, various three-dimensional (3-D) structures have been formed by packing shaped objects together. At the macroscale, the shape of objects is fixed and thus dictates how they can be arranged. For example, bricks attached by mortar retain their elongated rectangular shape. But at the nanoscale, the shape of objects can be modified to some extent when they are coated with organic molecules, such as polymers, surfactants (surface-active agents), and DNA. These molecules essentially create a “soft” shell around otherwise “hard,” or rigid, nano-objects. When the nano-objects pack together, their original shape may not be entirely preserved because the shell is flexible—a kind of nanoscale sculpturing.

Now, a team of scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia Engineering has shown that cube-shaped nanoparticles, or nanocubes, coated with single-stranded DNA chains assemble into an unusual “zigzag” arrangement that has never been observed before at the nanoscale or macroscale. Their discovery is reported in the May 17 online issue of Science Advances.

>Read more on the NSLS-II website

Image: Brookhaven Lab scientists Fang Lu (sitting), (left to right, standing) Oleg Gang, Kevin Yager, and Yugang Zhang in an electron microscopy lab at the Center for Functional Nanomaterials. The scientists used electron microscopes to visualize the structure of nanocubes coated with DNA.

New approach for solving protein structures from tiny crystals

Technique opens door for studies of countless hard-to-crystallize proteins involved in health and disease

Using x-rays to reveal the atomic-scale 3-D structures of proteins has led to countless advances in understanding how these molecules work in bacteria, viruses, plants, and humans—and has guided the development of precision drugs to combat diseases such as cancer and AIDS. But many proteins can’t be grown into crystals large enough for their atomic arrangements to be deciphered. To tackle this challenge, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and colleagues at Columbia University have developed a new approach for solving protein structures from tiny crystals.

The method relies on unique sample-handling, signal-extraction, and data-assembly approaches, and a beamline capable of focusing intense x-rays at Brookhaven’s National Synchrotron Light Source II (NSLS-II)—a DOE Office of Science user facility—to a millionth-of-a-meter spot, about one-fiftieth the width of a human hair.

>Read more on the NSLS-II at Brookhaven Lab website

Image: Wuxian Shi, Martin Fuchs, Sean McSweeney, Babak Andi, and Qun Liu at the FMX beamline at Brookhaven Lab’s National Synchrotron Light Source II, which was used to determine a protein structure from thousands of tiny crystals.