X-ray beams help seeing inside future nanoscale electronics

The technological advancement of fourth-generation synchrotrons, pioneered by MAX IV Laboratory, opens research opportunities that were impossible just a few years ago. In a newly published research paper, we get proof of the revolutionary impact that MAX IV’s photons can have for the advancement of nanoelectronics, both in research and for industrial manufacturers.

Thanks to the innovative concept of the multi-band achromats, MAX IV Laboratory has paved the way for fourth-generation synchrotrons and as of now, it is the most brilliant source of X-ray for research. The high coherence and brilliance delivered at MAX IV are giving scientists the tools for performing research previously unachievable in the X-ray spectrum. This potential is highlighted in a new publication centred on investigating innovative non-destructive characterization of embedded nanostructures.

Read more on the MAX IV website

Image: Depiction of the process of nanofocused X-ray beams scattering from a single nanowire transistor. Positively charged particles (+) and negatively charged particles (-) represent charge carriers in a p–n junction (where p–n junction is an interface between p-type and n-type semiconductor materials). Outgoing beams, depicted as white rays, represent scattering from different segments of the device (InAs and GaSb). The bending with arrows represents the strain revealed in the experiment.

Credit: Illustration by Dmitry Dzhigaev, Lund University.