Transition-metal dichalcogenide NiTe2: an ambient-stable material for catalysis and nanoelectronics

Recently, transition-metal dichalcogenides hosting topological states have attracted considerable attention for their potential implications for catalysis and nanoelectronics. The investigation of their chemical reactivity and ambient stability of these materials is crucial in order to assess the suitability of technology transfer. With this aim, an international team of researchers from Italy, Russia, China, USA, India, and Taiwan has studied physicochemical properties of NiTe2 by means of several experimental techniques and density functional theory. Surface chemical reactivity and ambient stability were followed by x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy (XAS) experiments at the BACH beamline, while the electronic band structure was probed by spin- and angle-resolved photoelectron spectroscopy (spin-ARPES) at the APE-LE beamline

Read more on the Elettra website

Image: a) Ni-3p core-level spectra collected from as-cleaved NiTe2 (black curves) and from the same surface exposed to 2·10L of CO (red curves), H2O (green curves) and O2 (blue curves).  Credit: Adapted from “S. Nappini et al., Adv. Funct. Mater. 30, 2000915 (2020); DOI: 10.1002/adfm.202000915” with permission from Wiley (Copyright 2020) with license 4873681106527