Scientists show the first step of turning CO2 into fuel in two very different ways

Their work aims to bridge two approaches to driving the reaction – one powered by heat, the other by electricity – with the goal of discovering more efficient and sustainable ways to convert carbon dioxide into useful products.

Virtually all chemical and fuel production relies on catalysts, which accelerate chemical reactions without being consumed in the process. Most of these reactions take place in huge reactor vessels and may require high temperatures and pressures.

Scientists have been working on alternative ways to drive these reactions with electricity, rather than heat. This could potentially allow cheap, efficient, distributed manufacturing powered by renewable sources of electricity.

But researchers who specialize in these two approaches – heat versus electricity – tend to work independently, developing different types of catalysts tailored to their specific reaction environments.

Read more on SLAC website

Image: This illustration shows one of the active sites of a new catalyst that accelerates the first step in making fuels and useful chemicals from carbon dioxide. The active sites consist of nickel atoms (green) bonded to nitrogen atoms (blue) and scattered throughout a carbon material (gray). SLAC and Stanford researchers discovered that this catalyst, called NiPACN, works in reactions driven by heat or electricity – an important step toward unifying the understanding of catalytic reactions in these two very different reaction environments.

Credit: (Greg Stewart/SLAC National Accelerator Laboratory)