Metal pollutants cause metabolic alterations in algae

Contamination by metals like cadmium or mercury is considered a serious threat to the environment and human health. Several human activities such as mining, metallurgy industry, and extensive use of mineral fertilizers are the main sources of ongoing metal pollution in numerous ecosystems. This environmental risk is potentiated by bioaccumulation and trophic chain biomagnification phenomena, which are associated with the long persistence of toxic metals in the polluted ecosystems. Aquatic and soil ecosystems affected by runoffs loaded with toxic metals are particularly vulnerable, where primary producers photosynthetic organisms (phytoplankton and soil microalgae) represent the first stage of pollution build-up. Knowledge about mechanisms of toxicity in these organisms is essential for appropriate assessment of environmental risks.

Researchers from the Plant Physiology Laboratory of the Department of Biology, also affiliated with the Research Centre for Biodiversity and Global Change, at the Autonomous University of Madrid (UAM), have discovered the major changes of biomolecules caused by cadmium and mercury in the model green microalga Chlamydomonas reinhardtii.

The use of synchrotron technology at MIRAS beamline was a valuable tool and has made it possible to analyze in detail variations in the biomolecular pattern caused by heavy metals at levels of resolution rarely described before. “Among the cellular components that readily changed upon metal treatments, we detected alterations in the lipid composition by synchrotron light infrared spectroscopy at ALBA, which corresponded to accumulation of neutral lipids and increased fatty unsaturation” specifies Ángel Barón, scientist at UAM.

Read more on the ALBA website

Image: Electron transmission microscopy of Chlamydomonas reinhardtii cells to show alterations caused by cadmium and mercury. The pyrenoid (p) looks aberrant, with proliferation of lipid vesicles (green arrowhead) and starch grains (s). Metals also triggered the appearance of autophagy vesicles (red arrowhead). Right: image of Chlamydomonas reinhardtii 

Credit: image of Chlamydomonas reinhardtii  Wikimedia Commons.