Developing new drugs for superbugs like MRSA

The team is using bright beams at the Canadian Light Source (CLS) at the University of Saskatchewan to image how potential antibiotic-enhancing drugs interact with a molecule vital for building the cell wall of bacteria.

Staphylococcus aureus (the “SA” part of MRSA) has a thick protective cell wall that can make it difficult for some antibiotic drugs to attack it. That wall is an attractive target for drugs. If a therapeutic can weaken or break the wall, then the bacteria will die.

One protein that makes an attractive target for drugs is called UppS. It is involved in assembling part of the lipid scaffold on which the wall is built. Attacking UppS could weaken the wall and make the bacteria more susceptible to existing antibiotics, says Sean Workman, a postdoctoral researcher in the Department of Biology at the University of Regina.

“By slowing down the function of UppS we can make the bacteria more sensitive to other drugs,” he says.

Eric Brown, a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University, went looking for drugs that could target the early steps in the creation of the cell wall and found clomiphene, an already-approved fertility drug that could interfere with UppS. He and his colleagues then used the same techniques to find several new molecules that could do the same thing, two of which – MAC-0547630 and JPD447 – seemed to be worth a closer look.

Read more on the CLS website

Image:UppS protein crystals used to obtain high resolution diffraction data.

Credit: Canadian Light Source