Spin keeps electrons in line in iron-based superconductor

Researchers from PSI’s Spectroscopy of Quantum Materials group together with scientists from Beijing Normal University have solved a puzzle at the forefront of research into iron-based superconductors: the origin of FeSe’s electronic nematicity. Using Resonant inelastic X-ray scattering (RIXS) at the Swiss Light Source (SLS), they discovered that, surprisingly, this electronic phenomenon is primarily spin driven. Electronic nematicity is believed to be an important ingredient in high-temperature superconductivity, but whether it helps or hinders it is still unknown. Their findings are published in Nature Physics.

Near PSI, where the Swiss forest is ever present in people’s lives, you often see log piles: incredibly neat log piles. Wedge shaped logs for firewood are stacked carefully lengthways but with little thought to their rotation. When particles in a material spontaneously line up, like the logs in these log piles, such that they break rotational symmetry but preserve translational symmetry, a material is said to be in a nematic state. In a liquid crystal, this means that the rod shaped molecules are able to flow like a liquid in the direction of their alignment, but not in other directions. Electronic nematicity occurs when the electron orbitals in a material align in this way. Typically, this electronic nematicity manifests itself as anisotropic electronic properties: for example, resistivity or conductivity exhibiting vastly different magnitudes when measured along different axes.

Since their discovery in 2008, the past decade has seen enormous interest in the family of iron based superconductors. Alongside the well-studied cuprate superconductors, these materials exhibit the mysterious phenomenon of high temperature superconductivity. The electronic nematic state is a ubiquitous feature of iron-based superconductors. Yet, until now, the physical origin of this electronic nematicity is a puzzle; in fact, arguably one of the most important puzzles in the study of iron-based superconductors.

Read more on the PSI website

Image: Resonant inelastic x-ray scattering reveals high-energy nematic spin correlations in the nematic state of the iron-based superconductor, FeSe

Credit: Beijing Normal University/Qi Tang and Xingye Lu