An efficient tool to link X-ray experiments and ab initio theory

The electronic structure of complex molecules and their chemical reactivity can be assessed by the method of resonant inelastic X-ray scattering (RIXS) at BESSY II. However, the evaluation of RIXS data has so far required very long computing times. A team at BESSY II has now developed a new simulation method that greatly accelerates this evaluation. The results can even be calculated during the experiment. Guest users could use the procedure like a black box.

Molecules consisting of many atoms are complex structures. The outer electrons are distributed among the different orbitals, and their shape and occupation determine the chemical behaviour and reactivity of the molecule. The configuration of these orbitals can be analysed experimentally. Synchrotron sources such as BESSY II provide a method for this purpose: Resonant inelastic X-ray scattering (RIXS). However, to obtain information about the orbitals from experimental data, quantum chemical simulations are necessary. Typical computing times for larger molecules take weeks, even on high-performance computers.

Read more on the HZB website

Image: The electronic structure of complex molecules can be assessed by the method of resonant inelastic X-ray scattering (RIXS) at BESSY II

Credit: © Martin Künsting /HZB

Scientists streamline process for controlling spin dynamics

Marking a major achievement in the field of spintronics, researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The study, published on the 18th January in Nature Materials, could lead to smaller, more energy-efficient electronic devices.

“Instead of searching for different materials that share the right frequencies, we can now alter the thickness of a single material—iron, in this case—to find a magnetic medium that will enable the transfer of information across a device,” said Brookhaven physicist and principal investigator Valentina Bisogni.

Read more on the BNL website

Image: An artist’s interpretation of measuring the evolution of material properties as a function of thickness using resonant inelastic x-ray scattering.