Researchers at Berkeley Lab, collaborating with CHESS scientists at the PIPOXS beamline, have made the first real-time movies of copper nanoparticles as they evolve to convert carbon dioxide and water into renewable fuels and chemicals. Their new insights could help advance the next generation of solar fuels.
Since the 1970s, scientists have known that copper has a special ability to recycle carbon dioxide into valuable chemicals and fuels. But for many years, scientists have struggled to understand how this common metal works as an electrocatalyst, a mechanism that uses energy from electrons to chemically transform molecules into different products.
Now, a research team led by Lawrence Berkeley National Laboratory (Berkeley Lab) has gained new insight by capturing the world’s first real-time movies of copper nanoparticles (copper particles engineered at the scale of a billionth of a meter) as they convert CO2 and water into renewable fuels and chemicals: ethylene, ethanol, and propanol, among others. The work was reported in the journal Nature.
“This is very exciting. After decades of work, we’re finally able to show – with undeniable proof – how copper electrocatalysts excel in CO2 reduction,” said Peidong Yang, a senior faculty scientist in Berkeley Lab’s Materials Sciences and Chemical Sciences Divisions who led the study. Yang is also a professor of chemistry and materials science and engineering at UC Berkeley. “Knowing why copper is such an excellent electrocatalyst brings us steps closer to turning CO2 into new, renewable solar fuels through artificial photosynthesis.”
Read more on the CHESS website
Image: Artist’s rendering of a copper nanoparticle as it evolves during CO2 electrolysis: Copper nanoparticles (left) combine into larger metallic copper “nanograins” (right) within seconds of the electrochemical reaction, reducing CO2 into new multicarbon products.
Credit: Yao Yang/Berkeley Lab