How a record-breaking copper catalyst converts CO2 into liquid fuels

Researchers at Berkeley Lab, collaborating with CHESS scientists at the PIPOXS beamline, have made the first real-time movies of copper nanoparticles as they evolve to convert carbon dioxide and water into renewable fuels and chemicals. Their new insights could help advance the next generation of solar fuels.

Since the 1970s, scientists have known that copper has a special ability to recycle carbon dioxide into valuable chemicals and fuels. But for many years, scientists have struggled to understand how this common metal works as an electrocatalyst, a mechanism that uses energy from electrons to chemically transform molecules into different products.

Now, a research team led by Lawrence Berkeley National Laboratory (Berkeley Lab) has gained new insight by capturing the world’s first real-time movies of copper nanoparticles (copper particles engineered at the scale of a billionth of a meter) as they convert CO2 and water into renewable fuels and chemicals: ethylene, ethanol, and propanol, among others. The work was reported in the journal Nature.

“This is very exciting. After decades of work, we’re finally able to show – with undeniable proof – how copper electrocatalysts excel in CO2 reduction,” said Peidong Yang, a senior faculty scientist in Berkeley Lab’s Materials Sciences and Chemical Sciences Divisions who led the study. Yang is also a professor of chemistry and materials science and engineering at UC Berkeley. “Knowing why copper is such an excellent electrocatalyst brings us steps closer to turning CO2 into new, renewable solar fuels through artificial photosynthesis.”

Read more on the CHESS website

Image: Artist’s rendering of a copper nanoparticle as it evolves during CO2 electrolysis: Copper nanoparticles (left) combine into larger metallic copper “nanograins” (right) within seconds of the electrochemical reaction, reducing CO2 into new multicarbon products.

Credit: Yao Yang/Berkeley Lab

Electrocatalysis – Iron and Cobalt Oxyhydroxides examined

A team led by Dr. Prashanth W. Menezes (HZB/TU-Berlin) has now gained insights into the chemistry of one of the most active anode catalysts for green hydrogen production. They examined a series of Cobalt-Iron Oxyhydroxides at BESSY II and were able to determine the oxidation states of the active elements in different configurations as well as to unveil the geometrical structure of the active sites. Their results might contribute to the knowledge based design of new highly efficient and low cost catalytical active materials.

Very soon, we need to become fossil free, not only in the energy sector, but as well in industry. Hydrocarbons or other raw chemicals can be produced in principle using renewable energy and abundant molecules such as water and carbon dioxide with the help of electrocatalytically active materials. But at the moment, those catalyst materials either consist of expensive and rare materials or lack efficiency.

Key reaction in water splitting

A team led by Dr. Prashanth W. Menezes (HZB/TU-Berlin) has now gained insights into the chemistry of one of the most active catalysts for the anodic oxygen evolution reaction (OER), which is a key reaction to supply electrons for the hydrogen evolution reaction (HER) in water splitting. The hydrogen can then be processed into further chemical compounds, e.g., hydrocarbons. Additionally, in the direct electrocatalytic carbon dioxide reduction to alcohols or hydrocarbons, the OER also plays a central role.

Read more on the HZB website

Image: LiFex-1Cox Borophosphates have been used as inexpensive anodes for the production of green hydrogen. Their dynamic restructuring during OER as well as their catalytically active structure, have been elucidated via  X-ray absorption spectroscopy.

Credit: © P. Menezes / HZB /TU Berlin

How a soil microbe could rev up artificial photosynthesis

Researchers discover that a spot of molecular glue and a timely twist help a bacterial enzyme convert carbon dioxide into carbon compounds 20 times faster than plant enzymes do during photosynthesis. The results stand to accelerate progress toward converting carbon dioxide into a variety of products.

Plants rely on a process called carbon fixation – turning carbon dioxide from the air into carbon-rich biomolecules ­– for their very existence. That’s the whole point of photosynthesis, and a cornerstone of the vast interlocking system that cycles carbon through plants, animals, microbes and the atmosphere to sustain life on Earth. 

But the carbon fixing champs are not plants, but soil bacteria. Some bacterial enzymes carry out a key step in carbon fixation 20 times faster than plant enzymes do, and figuring out how they do this could help scientists develop forms of artificial photosynthesis to convert the greenhouse gas into fuels, fertilizers, antibiotics and other products.

Now a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Stanford University, Max Planck Institute for Terrestrial Microbiology in Germany, DOE’s Joint Genome Institute (JGI) and the University of Concepción in Chile has discovered how a bacterial enzyme – a molecular machine that facilitates chemical reactions – revs up to perform this feat.

Rather than grabbing carbon dioxide molecules and attaching them to biomolecules one at a time, they found, this enzyme consists of pairs of molecules that work in sync, like the hands of a juggler who simultaneously tosses and catches balls, to get the job done faster. One member of each enzyme pair opens wide to catch a set of reaction ingredients while the other closes over its captured ingredients and carries out the carbon-fixing reaction; then, they switch roles in a continual cycle.  

Read more on the SLAC website

Helping to neutralise greenhouse gases

Researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to create an affordable and efficient electrocatalyst that can transform CO2 into valuable chemicals. The result could help businesses as well as the environment.

Electrocatalysts help to collect CO2 pollution and efficiently convert it into more valuable carbon monoxide gas, which is an important product used in industrial applications. Carbon monoxide gas could also help the environment by allowing renewable fuels and chemicals to be manufactured more readily.

The end goal would be to try to neutralize the greenhouse gases that worsen climate change.

Precious metals are often used in electrocatalysts, but a team of scientists from Canada and China set out to find a less expensive alternative that would not compromise performance. In a new paper, the stability and energy efficiency of the team’s novel electrocatalyst offered promising results.

Read more on the Canadian Light Source website

Image : Schematic of an electrochemistry CO2-to-CO reduction reaction.