Helping people to hear

Using advanced techniques at the Canadian Light Source (CLS) at the University of Saskatchewan, scientists have created three-dimensional images of the complex interior anatomy of the human ear, information that is key to improving the design and placement of cochlear implants.
“With the images, we can now see the relationship between the cochlear implant electrode and the soft tissue, and we can design electrodes to better fit the cochlea,” said Dr. Helge Rask-Andersen, senior professor at Uppsala University in Sweden.
“The technique is fantastic and we can now assess the human inner ear in a very detailed way.”
The cochlea is the part of the inner ear that looks like a snail shell and receives sound in the form of vibrations. In cases of hearing loss, cochlear implants are used to bypass damaged parts of the ear and directly stimulate the auditory nerve. The implant generates signals that travel via the auditory nerve to the brain and are recognized as sound.
By imaging the soft and bony structures of the inner ear with implant electrodes in place, Rask-Andersen said the researchers were able to discover what the auditory nerve looks like in three dimensions, and to learn how cochlear implant electrodes behave inside the cochlea. This is very important when cochlear implants are considered for people with limited hearing.

>Read more on the Canadian Light Source website

Image: the inner ear

Imaging the inner ear promises to be new gold standard for hearing researchers

Her interest in providing people who suffer from sensorineural hearing loss with a richer music-listening experience has led a young Harvard researcher to the Canadian Light Source (CLS) and to a discovery that opens the door to exciting new avenues for the study and diagnosis of human inner ear diseases.
“Hearing loss is such a widespread problem and my hope is that our work will eventually help us better diagnose and treat it. People are just not aware of how sensitive the auditory system is to trauma, and how isolating and depressing it can be to lose one’s ability to communicate fluidly with others,” says Janani Iyer, a PhD candidate in the Harvard-MIT Speech and Hearing Bioscience and Technology program.

A musician herself, Iyer came to Saskatoon to tackle the problem of how to create detailed images of the delicate structures that allow humans to hear.
“Part of what drew me to this is that, despite its prevalence, hearing loss is incredibly understudied and incredibly underfunded,” she said.

>Read more on the Canadian Light Source website