A very powerful method that illuminates all research fields

Photon Factory at KEK – #LightSourceSelfie

Science is ever-evolving. This is particularly true in the world of light sources. As science, technology and computing advances are made, the machines that enable all the amazing scientific research advance too.

Kentaro Harada is an Associate Professor in the Beam dynamics and Magnets Group at KEK’s Photon Factory in Japan. As an accelerator scientist, his research is centred around magnets, power supplies, beam diagnostics and the operation of accelerators. The goals of Kentaro and his colleagues are to improve present accelerators and to design accelerators that will drive the science of the future. In his insightful #LightSourceSelfie, Kentaro says, “I think research and engineering are like the arts. The expression of uniqueness is first motivation. My goal is to do what only I can do.”

Novel protocol for mass production of nanowires

Nanotechnology is one of the major driving forces behind the technological revolution of this century and nanomaterials play a key role in this revolution. While the use of nanoparticles is widespread in industrial applications, the use of nanowires -wires with a diameter of only a few nanometres- is mostly reduced to scientific areas. The fields of biomedicine and permanent magnets would benefit from the cost-effective mass production of nanowires.

In a recent publication, researchers from the Universidad Complutense de Madrid (UCM) and various centres from the Consejo Superior de Investigaciones Científicas (CSIC), in collaboration with ALBA, have established a novel and sustainable synthesis protocol that allows obtaining a greater number of nanowires than conventional laboratory fabrication processes with considerably reduced production time and cost.

The goal of this project was to increase the production of metallic nanowires, reducing costs and timings to expand their applicability to industry. Due to the high costs associated with the high-purity aluminium normally used as the starting material, as well as with the low temperature and large anodization time, the commercial application of nanowires using anodized aluminium oxide is still limited by their fabrication process.

Read more on the ALBA website

Image: The CIRCE beamline (variable polarization soft X-ray beamline dedicated to advanced photoemission experiments)

Credit: ALBA