Review of X-ray scattering methods with synchrotron radiation

Synchrotron light sources provide brilliant light with a focus on the X-ray region and have enormously expanded the possibilities for characterising materials. In the Reviews of Modern Physics, an international team now gives an overview of elastic and inelastic X-ray scattering processes, explains the theoretical background and sheds light on what insights these methods provide in physics, chemistry as well as bio- and energy related themes.

“X-ray scattering can be used to investigate and resolve a wide variety of issues from the properties and excitations of fuctional solids, to homogeneous and heterogeneous chemical processes and reactions or even the proton pathway during the splitting of water,” explains Prof. Dr. Alexander Föhlisch, who heads the Institute Methods and Instrumentation for Research with Synchrotron Radiation at HZB.

Read more on the HZB website

Image: Resonant X-ray excitation (purple) core excites the oxygen atom within a H2O molecule. This causes ultrafast proton dynamics. The electronic ground state potential surface (bottom) and the bond dynamics is captured by distinct spectral features in resonant inelastic X-ray scattering (right).

Credit: © Martin Künsting /HZB

Towards better LED lighting

Designing energy efficient, high output, perfectly tinted LEDs

SASKATOON – Scientists have combined experimental data gathered at the Canadian Light Source at the University of Saskatchewan and theoretical data to build deep insight into two types of light emitting crystals for next-generation LEDs.

“When we have means of creating more efficient lighting, this has a huge environmental impact,” says Alexander Moewes, Canada Research Chair in Materials Science with Synchrotron Radiation at the University of Saskatchewan, who cites that lighting accounts for 15-20% of global electricity consumption, and therefore for roughly 5% of worldwide greenhouse gas emissions.

Read more on the CLS website

Image: Tristan de Boer,  Patrick Braun, Ruhul Amin, Alexander Moewes and Amir Qamar outside the Physics building at USask