Researchers resolve decades-long debate about shock-compressed silicon with unprecedented detail

They saw how the material finds a path to contorting and flexing to avoid being irreversibly crushed.


Silicon, an element abundant in Earth’s crust, is currently the most widely used semiconductor material and is important in fields like engineering, geophysics and plasma physics. But despite decades of studies, how the material transforms when hit with powerful shockwaves has been a topic of longstanding debate.

“One might assume that because we have already studied silicon in so many ways there is nothing left to discover,” said Silvia Pandolfi, a researcher at the Department of Energy’s SLAC National Accelerator Laboratory. “But there are still some important aspects of its behavior that are not clear.”

Now, researchers at SLAC have finally put this controversy to rest, providing the first direct, high-fidelity view of how a single silicon crystal deforms during shock compression on nanosecond timescales. To do so, they studied the crystal with X-rays from SLAC’s Linac Coherent Light Source (LCLS) X-ray laser. The team published their results in Nature Communications on September 21st. What they learned could lead to more accurate models that better predict what will happen to certain materials in extreme conditions.

“This is a great example of an experiment that’s necessary to better understand certain materials,” said SLAC scientist Arianna Gleason, who was the principal investigator. “You have to start simple, with single crystals, to know what you’re tracking and understand it in really detailed ways before you can build up complexity to give way to, say, the next semiconductor of the 21st Century that will allow the electronics industry to continue the remarkable progress seen in the past 50 years.”

Read more on the SLAC website