Scientists synthesise new materials at terapascal pressures for the first time

A team led by the University of Bayreuth (Germany) has synthesized, for the first time, new materials at terapascal pressures, using the ESRF’s ID11 and a unique diamond anvil cell. The results are published in the journal Nature.

Matter changes with variations of pressure and temperature, which allows the tuning of many material properties. These possibilities can shed light onto scientific questions, such as the fundamental understanding of the Universe or lead to targeted design of advanced materials. For example, today super-abrasive cubic Boron Nitride is used for grinding high-quality tool steels and artificial diamonds created using high temperature and high pressure are more prevalent than natural ones.

A team of scientists led by the University of Bayreuth has synthesized new materials at terapascal pressures using laser heating for the first time. The team used rhenium-nitrogen compounds as models to show that studies at pressures three times higher than pressure in the center of the Earth are now possible. Natalia Dubrovinskaya, professor at the University of Bayreuth and one of the corresponding authors of the paper, explains the relevance of these compounds:  “These novel rhenium-nitrogen compounds showed that at ultra-high pressures we can make materials that cannot be made at lower pressures/temperatures, and uncover fundamental rules of physics and chemistry. We found, for example, that due to a huge compression, rhenium behaves chemically in a similar way to iron”.

Read more on the ESRF website

Image: Schematic illustration of the Diamond Anvil Cell assembly

Credit: Timofey Fedotenko