#SynchroLightAt75 – Development of the first in-vacuum undulator in the world

The development of in-vacuum undulators, in which a short period is achieved by placing periodic magnet inside the accelerator’s vacuum pipe, began at KEK around 1988, and light was successfully generated for the first time in December 1990.

This technology can transform synchrotron radiation facilities into compact and energy-saving ones, because short-period undulators can generate high energy and intense X-rays even in 3-GeV class storage ring. The development has led to a trend towards the construction of synchrotron radiation facilities installed in-vacuum undulators around the world.

To read more #SychroLightAt75 highlights, visit Highlights – Lightsources.org

Image: The first in-vacuum undulator (period length : 4cm)

Credit: Photon Factory, KEK

SLAC’s upgraded X-ray laser facility produces first light

Marking the beginning of the LCLS-II era, the first phase of the major upgrade comes online.

Menlo Park, Calif. — Just over a decade ago in April 2009, the world’s first hard X-ray free-electron laser (XFEL) produced its first light at the US Department of Energy’s SLAC National Accelerator Laboratory. The Linac Coherent Light Source (LCLS) generated X-ray pulses a billion times brighter than anything that had come before. Since then, its performance has enabled fundamental new insights in a number of scientific fields, from creating “molecular movies” of chemistry in action to studying the structure and motion of proteins for new generations of pharmaceuticals and replicating the processes that create “diamond rain” within giant planets in our solar system.

The next major step in this field was set in motion in 2013, launching the LCLS-II upgrade project to increase the X-ray laser’s power by thousands of times, producing a million pulses per second compared to 120 per second today. This upgrade is due to be completed within the next two years.

Today the first phase of the upgrade came into operation, producing an X-ray beam for the first time using one critical element of the newly installed equipment.

Read more on the SLAC website

Image: Over the past 18 months, the original LCLS undulator system was removed and replaced with two totally new systems that offer dramatic new capabilities .

Credit: (Andy Freeberg/Alberto Gamazo/SLAC National Accelerator Laboratory)

The driving force behind Cornell Compact Undulators at CHESS

Researchers at CHESS are working to further improve the already impressive CHESS Compact Undulator, or CCU.

Within the new NSF-funded CHEXS award, Sasha Temnykh is developing a new driving mechanisms that will add variable gap control and even better tuning of the device, both desirable qualities for a variety of experimental needs.

Undulators are critical devices for the creation of brilliant X-rays at CHESS and other lightsources around the world. With the recent CHESS-U upgrade, the Cornell Electron Storage Ring, CESR, is now outfitted with seven new insertion devices. As the beam circulates around CESR, it passes through a series of alternating magnets in the undulators, resulting in X-rays that are roughly 20 times brighter than those produced prior to the upgrade, making CHESS an even more powerful X-ray source.

Researchers at CHESS lead by Sasha Temnykh are working continuously to improve the already impressive CHESS Compact Undulator, or CCU. The CCUs are about ten times more compact, lighter, and less expensive compared to conventional insertion devices typically used at other lightsource. They also require a significant shorter fabrication time. Nine CCUs have already been constructed in industry from the Cornell-held patent, and according to KYMA, the manufacturer of the CCU, other labs are starting to show interest in the device.

>Read more on the CHESS website

Image: Sasha Temnykh is the driving force behind the Cornell Compact Undulator design and development. 

PHELIX beamline – undulator installation and hutch construction

The PHELIX beamline construction continues. In October 2018 the light source for the beamline – an undulator – was installed in the storage ring. In November construction of the an optical hutch ended.

The hutch will protect people from radiation hazards. In the near future it will house the first optical components of the beamline.
The next planned steps are the installation of the front-end, i.e. the part of the beamline situated in the storage ring tunnel after the source (January 2019), the installation of the beamline with optical components for X-rays (February-March 2019) and the installation of the end-station (May-June 2019).

The PHELIX beamline will use soft X-rays. Its end station will enable a wide range of spectroscopic and absorption studies characterized by different surface sensitivity. In addition to collecting standard high-resolution spectra, it will allow, for example, to map the band structure in three dimensions and to detect electron spin in three dimensions. Users will, therefore, be able to conduct research on new materials, thin films and multilayers systems, catalysts and biomaterials, surface of bulk compounds, spin polarized surface states, as well as chemical reactions taking place on the surface.

>Read more on the SOLARIS website

Image credit: Agata Chrześcijanek

HZB builds undulator for SESAME in Jordan

The Helmholtz-Zentrum Berlin is building an APPLE II undulator for the SESAME synchrotron light source in Jordan. The undulator will be used at the Helmholtz SESAME beamline (HESEB) that will be set up there by five Helmholtz Centres. The Helmholtz Association is investing 3.5 million euros in this project coordinated by DESY.
SESAME stands for “Synchrotron Light for Experimental Science and Applications in the Middle East” and provides brilliant X-ray light for research purposes. The third-generation synchrotron radiation source became operational in 2017. Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority, Turkey, and Cyprus are cooperating on this unique project to provide scientists from the Middle East with access to one of the most versatile tools for research.

New beamline for soft x-rays

Thus far, SESAME has four beamlines and will now receive a fifth meant to generate “soft” X-ray light in the energy range between 70 eV and 1800 eV. This X-ray light is particularly suitable for investigating surfaces and interfaces of various materials, for observing certain chemical and electronic processes, and for non-destructive analysis of cultural artefacts. The new beamline will be constructed as the Helmholtz SESAME Beamline (HESEB) by the Helmholtz Centres DESY (coordinating Centre), Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz-Zentrum Berlin (HZB) as well as the Karlsruhe Institute of Technology (KIT).

>Read more on the Bessy II at HZB website

Image: The APPLE II UE56 double undulator generates brilliant light with variable polarization.
Credit: HZB