#SynchroLightAt75 – X-ray detector technology

X-Ray detectors first developed at Paul Scherrer Institute PSI in the 1990s to aid the search for the Higgs Boson at CERN and then applied to the Swiss Light Source SLS led to the spin-off, Dectris. Today this company employs over 100 people and its cutting-edge detectors are used at synchrotron and free electron laser (FEL) light sources worldwide for diverse applications ranging from protein structure determination to investigations into novel materials.

As the light source community marks #SynchroScienceAt75, we look back on this fascinating chapter in the history of light sources….

From the Higgs boson to new drugs (story published by PSI in 2016)

New ultrafast detector at the Paul Scherrer Institute

A picture-perfect example of how basic research makes solid contributions to the economy is the company DECTRIS in Baden-Dättwil, Switzerland — a spin-off of the Paul Scherrer Institute PSI, founded in 2006 and already highly successful. The detector that became, around ten years ago, the company’s founding product originated in the course of the search for the Higgs boson. Now the newest development from DECTRIS is on the market: an especially precise detector called EIGER, which is used for X-ray measurements at large research facilities. Since the fall of 2015, the newest model of the EIGER series has proven itself at the Swiss Light Source SLS. These days, researchers are writing the first scientific publications about experiments that have been carried out with the new detector. EIGER helps researchers to measure protein molecules better and more precisely than before. That in turn is of great interest for the development of new pharmaceuticals. It’s possible that urgently needed alternatives to antibiotics might be found in this way.

Read more on the PSI website

Image: PSI scientist Justyna Wojdyla and DECTRIS engineer Michel Stäuber with the EIGER X 16M – the spin-off company’s newest and, so far, highest-performance X-ray detector (caption from 2016)

Credit: Scanderbeg Sauer Photography

#SynchroLightAt75 – Rod MacKinnon’s Nobel Prize in chemistry

Rod MacKinnon – Nobel Prize in chemistry 2003 for work on the structure of ion channels  

The structural work of MacKinnon was carried out primarily at the Cornell High Energy Synchrotron Source (CHESS) and the National Synchrotron Light Source (NSLS) at Brookhaven. At the time, CHESS was a first-generation SR source.  The award for MacKinnon’s work was the second recognition of SR work by the Nobel Committee. MacKinnon acknowledges the crucial role that the two synchrotron facilities, Cornell Synchrotron (CHESS/MacCHESS) and NSLS, have played in his research on the protein crystallography of membrane channels.

He said, `Without exaggeration that most of what is known about the chemistry and structure of ion channels has come from experiments carried out at these SR centres’.

Rod MacKinnon

Read more on the Nobel Prize website

Image: View showing the location of CHESS, which is underground at Cornell

Credit: Jon Reis

#SynchroLightAt75 – The first multi-bend achromat synchrotron light source

At the end of the 1990’s, the MAX-lab management realized that it was necessary to start planning for a possible next step in the development of the laboratory. Although MAX II, one of the first 3rd generation light sources in the world and the flagship of the laboratory, had just recently come into operation, the long lead times made it necessary to start exploring possible further developments already at that stage. This is the saga of MAX IV Laboratory, the world’s first Multi-Bend Achromat (MBA) Synchrotron Radiation Light Source. MBAs strongly focus and guide electrons around the storage ring, creating an ultra-low emittance beam and therefore ultra-bright X-ray radiation.

Read more in this Nuclear Instruments and Methods in Physics Research – section A (NIM-A) publication

Image:  Prof. Ingolf Lindau, Director of MAX-lab 1991–97, shows the facility to the king of Sweden, Carl XVI Gustav, at the inauguration of MAX II, 15 September 1995

Credit:  MAX IV

#SynchroLightAt75 – Photon Factory at the dawn of structural biology using SR

The Photon Factory opened its first dedicated protein crystallography beamline with a Weissenberg camera in the mid-1980s. Prof. Ada Yonath, who was awarded the Nobel Prize in Chemistry in 2009 for her work on the structure-function analysis of ribosomes, was working at the Photon Factory at this time. The cryo-crystallography developed at the time led to the successful structural analysis.

Read more about the 2009 Nobel Prize in Chemistry and KEK’s Photon Factory here: KEK feature article

Image: Cryo-cooling system developed by Prof. Ada Yonath installed at the Photon Factory

Credit: Photo courtesy of Prof. Noriyoshi Sakabe

#SynchroLightAt75 – Development of the first in-vacuum undulator in the world

The development of in-vacuum undulators, in which a short period is achieved by placing periodic magnet inside the accelerator’s vacuum pipe, began at KEK around 1988, and light was successfully generated for the first time in December 1990.

This technology can transform synchrotron radiation facilities into compact and energy-saving ones, because short-period undulators can generate high energy and intense X-rays even in 3-GeV class storage ring. The development has led to a trend towards the construction of synchrotron radiation facilities installed in-vacuum undulators around the world.

To read more #SychroLightAt75 highlights, visit Highlights – Lightsources.org

Image: The first in-vacuum undulator (period length : 4cm)

Credit: Photon Factory, KEK

#SynchroLightAt75 campaign launches on International Day of Light

The SRS at Daresbury Laboratory in the UK was the world’s first dedicated synchrotron light source facility. It opened in 1980 and delivered worldwide impact and two Nobel Prizes.

The first of its kind, the SRS enabled research that has improved the quality of our lives in so many ways. This included research into diseases such as HIV and AIDS, as well as motor neurone disease, to name just a few examples. The structure of the Foot & Mouth virus was solved for the first time at the SRS – it was the first animal virus structure to be determined in Europe and led to the development of a vaccine. The huge magnetic memory of the Apple iPod was also the result of research carried out on the SRS. However, its most famous achievement was the key role it played towards a share of two Nobel Prizes in Chemistry.  One to Sir John Walker in 1997, for solving a structure of an enzyme that opened the way for new insights into metabolic diseases, and the other to Sir Venki Ramakrishnan in 2009, for his work on the structure and function of the Ribosome, the particle responsible for protein synthesis in living cells.

During its lifetime, the SRS created a critical mass of highly skilled engineers and technicians at Daresbury Laboratory, with specialisms ranging from detectors to magnets and electronics, and by the time it closed in 2008, it had collaborated with almost every country active in scientific research. It had hosted over 11,000 users from academia, government laboratories and industry worldwide, leading to the publication of more than 5000 research papers, resulting in numerous patents. The economic impact of this was vast on a worldwide scale, but it also played an important role in boosting the regional economy of the North West, having worked with hundreds of local businesses.

The success of the SRS led to the development of many similar machines around the world, with the technologies and skills developed still in use at many facilities today, including its UK successor, the Diamond Light Source at Harwell Science and Innovation Campus in Oxfordshire. It also led to the establishment of ASTeC, a leading centre for accelerator science and technology at Daresbury Laboratory, and the Cockcroft Institute, a joint venture between STFC and the Universities of Lancaster, Liverpool, Manchester and Strathclyde. It is also home to CLARA, a unique particle accelerator designed to develop, test and advance accelerator technologies of the future. Research carried out by accelerator scientists at Daresbury has had many impacts, particularly in the health and medicine arena, including work to develop our next generation of proton imaging technology for cancer detection, and research that could one day lead to more efficient diagnoses of cervical, oesophageal, and prostate cancers. In the footsteps of  senior scientist, Professor Ian Munro, who was responsible for the plan to build the SRS and for its operation at Daresbury, ASTeC’s accelerator scientists and engineers continue to play a key role in designing, building and upgrading the world’s newest generations of accelerator facilities.

Read more on the STFC/UKRI website

Image: The SRS control room


Credit: STFC