Ultrafast and tunable

Terahertz-to-visible light conversion for future telecommunications

A study carried out by a research team from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Catalan Institute of Nanoscience and Nanotechnology (ICN2)University of Exeter Centre for Graphene Science, and TU Eindhoven demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable, as the team presents its findings in Nano Letters (DOI: 10.1021/acs.nanolett.3c00507). These outcomes open the path to exciting applications in near-future information and communication technologies.

The ability to convert signals from one frequency regime to another is key to various technologies, in particular in telecommunications, where, for example, data processed by electronic devices are often transmitted as optical signals through glass fibers. To enable significantly higher data transmission rates future 6G wireless communication systems will need to extend the carrier frequency above 100 gigahertz up to the terahertz range. Terahertz waves are a part of the electromagnetic spectrum that lies between microwaves and infrared light. However, terahertz waves can only be used to transport data wirelessly over very limited distances. “Therefore, a fast and controllable mechanism to convert terahertz waves into visible or infrared light will be required, which can be transported via optical fibers. Imaging and sensing technologies could also benefit from such a mechanism,” says Dr. Igor Ilyakov of the Institute of Radiation Physics at HZDR.

Read more on the HZDR website

Image: A graphene-based material converts incoming terahertz pulses (from above) into visible light in an ultrafast and controllable manner – optimal for data transport in optical fibers.

Credit: B. Schröder/HZDR