Seven at one pulse

New material acts as an efficient frequency multiplier

Higher frequencies mean faster data transfer and more powerful processors – the formula that has been driving the IT industry for years. Technically, however, it is anything but easy to keep increasing clock rates and radio frequencies. New materials could solve the problem. Experiments at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have now produced a promising result: An international team of researchers was able to get a novel material to increase the frequency of a terahertz radiation flash by a factor of seven: a first step for potential IT applications, as the group reports in the journal Nature Communications (DOI: 10.1038/s41467-020-16133-8).

Read more on the TELBE at Helmholtz-Zentrum Dresden-Rossendorf website

Image: An international team of researchers was able to show that the three-dimensional Dirac material cadmium arsenide (blue-red cone) can multiply the frequency of a strong terahertz pulse (red line) by a factor of seven. The reason for this are the free electrons (red dots) in the cadmium arsenide, which are accelerated by the electrical field of the terahertz flash and, thus, in turn emit electromagnetic radiation.

Credit: HZDR / Sahneweiß / istockphoto.com, spainter_vfx

A closer look at superconductors

A new measuring method helps understand the physics of high-temperature superconductivity

From sustainable energy to quantum computers: high-temperature superconductors have the potential to revolutionize today’s technologies. Despite intensive research, however, we still lack the necessary basic understanding to develop these complex materials for widespread application. “Higgs spectroscopy” could bring about a watershed as it reveals the dynamics of paired electrons in superconductors. An international research consortium centered around the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the Max Planck Institute for Solid State Research (MPI-FKF) is now presenting the new measuring method in the journal Nature Communications (DOI: 10.1038/s41467-020-15613-1). Remarkably, the dynamics also reveal typical precursors of superconductivity even above the critical temperature at which the materials investigated attain superconductivity.

Read more on the TELBE at HZDR website

Image: Deciphering previously invisible dynamics in superconductors – Higgs spectroscopy could make this possible: Using cuprates, a high-temperature superconductor, as an example, an international team of researchers has been able to demonstrate the potential of the new measurement method. By applying a strong terahertz pulse (frequency ω), they stimulated and continuously maintained Higgs oscillations in the material (2ω). Driving the system resonant to the Eigenfrequency of the Higgs oscillations in turn leads to the generation of characteristic terahertz light with tripled frequency (3ω).

A laser for penetrating waves

Research team develops a new principle to generate terahertz radiation

The “Landau-level laser” is an exciting concept for an unusual radiation source. It has the potential to efficiently generate so-called terahertz waves, which can be used to penetrate materials as well as for future data transmission. So far, however, nearly all attempts to make such a laser reality have failed. An international team of researchers has now taken an important step in the right direction: In the journal Nature Photonics (DOI: 10.1038/s41566-019-0496-1), they describe a material that generates terahertz waves by simply applying an electric current. Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) played a significant role in this project.
Like light, terahertz waves are electromagnetic radiation, in a frequency range between microwaves and infrared radiation. Their properties are of great technological and scientific interest, as they allow fundamental researchers to study the oscillations of crystal lattices or the propagation of spin waves. Simultaneously “terahertz waves are of interest for technical applications because they can penetrate numerous substances that are otherwise opaque, such as clothing, plastics and paper,” Stephan Winnerl from HZDR’s Institute of Ion Beam Physics and Materials Research explains. Terahertz scanners are already used today for airport security checks, detecting whether passengers are concealing dangerous objects under their clothing – without having to resort to harmful X-rays.
>Read more on the FELBE at HZDR website

Image: An international research team has been able to show that it is relatively easy to generate terahertz waves with an alloy of mercury, cadmium and tellurium. To examine the behavior of the electrons in the material, the physicists use the free-electron laser FELBE at HZDR. Circularly polarized terahertz pulses (orange spiral) excite the electrons (red) from the lowest to the next higher energy level (parabolic shell). The energy gap of these so-called Landau levels can be adjusted with the help of a magnetic field. Credit : HZDR / Juniks