Saving Rembrandt for future generations

New research on beamline I18 at Diamond Light Source investigates preservation techniques for Old Master paintings.

The surface of many Old Master paintings has been affected by the appearance of whitish lead-rich deposits, which are often difficult to fully characterise, thereby hindering conservation. Painted in 1663, Rembrandt’s Homer is an incredibly valuable and much-loved painting. Like many Old Masters it has a long and eventful past, which has taken its toll on the painting’s chemistry. The test of time and environmental factors, combined with the painting’s history, caused a barely visible, whitish crust to form on the surface of the painting. This crust indicates that chemical reactions are occurring which could potentially pose as risk for Homer and other old paintings if not kept in stable museum conditions.
A paper in ChemComm (Royal Society of Chemistry) has been published by a team of conservation scientists from the Mauritshuis in the Hague and the Rijksmuseum in Amsterdam, University of Amsterdam and scientists from Finden Ltd, UCL and Diamond Light Source, the UK’s National Synchrotron. Called “Unravelling the spatial dependency of the complex solid-state chemistry of Pb in a paint micro-sample from Rembrandt’s Homer using XRD-CT,” this paper is particularly timely given the celebrations occurring in 2019 to mark 350 years since the death of Rembrandt and the Dutch Golden Age. A paint micro-sample from Rembrandt’s Homer was imaged using X-ray Diffraction Computed Tomography (XRD-CT) in order to understand the evolving solid-state Pb chemistry from the painting surface and beneath.

>Read more on the Diamond Light Source website

Image: Stephen Price, Lead author from Diamond Light Source and Finden Ltd.