Research on the teeth of a prehistoric fetus

It gives us information about the last months of a mother and child, who lived 27.000 years BP.

Fossil records enable a detailed reconstruction of our planet’s history and of the evolution of our species. Dental enamel is a sort of biological archive that constantly tracks periods of good and bad health, while forming. Prenatal enamel, which grows during intrauterine life, reports the mother’s history as well.

We have studied fossil records found in the “Ostuni 1” burial site, discovered in Santa Maria di Agnano in Puglia in 1991 by Donato Coppola (Università di Bari, Italy) and dated back over 27,000 years. More specifically, we were interested in the teeth of a fetus found in the pelvic area of the skeleton of a young girl. By analysing the still forming teeth of the baby, it has been possible to obtain information about the health condition of the mother during the last months of pregnancy, to establish the gestational age of the fetus, and also to identify some specificities of the embryonal development. For the first time, it has been possible to reconstruct life and death of an ancient fetus and, at the same time, to shed light on its mother’s health.

Three still-forming incisors, belonging to the fetus, have been visualized and analyzed by means of X-ray microtomography at Elettra. The preliminary analysis on a portion of the fetal mandible, realized at the TomoLab laboratory allowed us to study the still-forming incisor contained within it (see Fig. 1). Thanks to the unique properties of synchrotron radiation and using a specifically-developed methodology, a high resolution 3D analysis has been carried out on the teeth at the SYRMEP beamline. This approach, allowed us to carry out a virtual histological analysis of the precious fossil teeth, revealing the finest structures of the dental enamel in a non-destructive way.

>Read more on the Elettra website

Image:  Pseudo color rendering of the virtual histological section of the Ostuni1b’s upper left deciduous central incisor. The corresponding CT scan has been acquired at the SYRMEP beamline in phase-contras mode.