Shedding new light on laser additive manufacturing

Additive manufacturing (AM, also known as 3D printing) allows us to create incredibly complex shapes, which would not be possible using traditional manufacturing techniques. However, objects created using AM have different properties from traditional manufacturing routes, which is sometimes a disadvantage.

Laser additive manufacturing (LAM) uses a laser to fuse together metallic, ceramic or other powders into complex 3D shapes, layer by layer. The cooling rates are extremely rapid, and since they are unlike conventional processes we don’t know the optimal conditions to obtain the best properties, delaying the uptake of LAM in the production of safety-critical engineering structures, such as turbine blades, energy storage and biomedical devices. We need a method to see inside the process of LAM to better understand and optimise the laser-matter interaction and powder consolidation mechanisms.

Based in the Research Complex at Harwell, a team of researchers have worked with scientists at I12, the Joint Engineering Environment Processing (JEEP) beamline and the Central Laser Facility to build a laser additive manufacturing machine which operates on a beamline, allowing you to see into the heart of the process, revealing the underlying physical phenomena during LAM.

>Read more on the Diamond Light Source website

Picture: The Additive Manufacturing Team from the Research Complex at Harwell on the Joint Engineering Environment Processing (JEEP, I12) beamline. The Laser Additive Manufacturing Process Replicator (or LAMPR) on the right is used to reveal the underlying physical phenomena during LAM.