Ultrafast lasers protect a DNA building block from destruction

An international research team led by DESY researcher Francesca Calegari and with the key participation of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) has demonstrated that ultrashort laser pulses can be used to protect one of the DNA building blocks against destruction induced by vacuum ultraviolet (VUV) radiation. The research group unveiled that a second laser flash in the infrared, timed shortly (only a few millionths of billions of a second) after the first VUV flash, prevented the adenine molecule to disintegrate, therefore stabilising it. The group presents their work in the journal Communications Chemistry published by Nature publishing group.

High energy radiation can cause irreparable damage to our own biological molecules – such as DNA – leading to mutations and potentially cell death. Damage is often occurring as a consequence of the molecular ionisation, inducing the fragmentation of the DNA subunits. So far, protection against radiation damage has hardly been achieved, as the photo-induced dissociation process could not be stopped. In their ultra-short-time experiments, Francesca Calegari´s research group and collaborators have discovered that, by taking advantage of mechanisms that take place on extremely fast time scales, it is indeed possible to protect the molecule.

Read more on the DESY website

image: Artist´s impression of the ultrafast stabilisation of adenine against dissociation: When the molecule is ionised by VUV radiation it undergoes dissociation, however, by taking advantage of a charge migration mechanism and by properly timing a second infrared laser pulse it is possible to stabilise it via a second ionisation event.

Credit: U. De Giovannini MPSD

Liquid carbon can be disclosed if one is ultrafast enough

At the FERMI FEL, beamline EIS-TIMEX, a novel approach combining FEL and fs-laser radiation has been developed for generating liquid carbon under controlled conditions and monitoring its properties of at the atomic scale. The method has been put to the test depositing a huge amount (5 eV/atom, 40 MJ/kg) of optical energy delivered by an ultrashort laser pulse (less than 100 fs, 10-13 s) into a self-standing amorphous carbon foil (a-C, thickness about 80 nm) and subsequently probing the excited sample volume with the FEL pulse varying both the FEL photon energy across the C K-edge (~ 283 eV) and delay between FEL and laser. A time-resolved x-ray absorption spectroscopy (tr-XAS, Fig. 2a) has been obtained of l-C with a record time resolution of less than 100 fs.

This method allowed researchers to monitor the formation of the liquid carbon phase at a temperature of 14200 K and pressure of 0.5 Mbar occurring in about 300 fs after absorption of the laser pump pulse as an effect of the constant volume (isochoric) heating of the carbon sample.

Read more on the ELETTRA website

Image: Artistic image illustrating the ultrafast laser-heating process used to generate liquid carbon in the laboratory. Illustration: Emiliano Principi.

Laser, camera, action: Ultrafast ring opening of thiophenone tracked by time-resolved XUV photoelectron spectroscopy

Light-induced ring opening reactions form the basis of important biological processes such as vitamin D synthesis, and are also touted as promising candidates for the development of molecular switches. In recent years, new time-resolved techniques have emerged to investigate these processes with unprecedented temporal and spatial resolution.

An international research team from the USA, UK, Germany, Sweden, Australia, and the local team at the FERMI free-electron laser, combined time-resolved photoelectron spectroscopy with high-level electronic structure and molecular dynamics calculations to unravel the dynamics of a prototypical reaction along the full photochemical cycle of a ring molecule (thiophenone) – from photoexcitation, ring opening, all the way through to the subsequent ground state dynamics, and spanning a range of tens of femtoseconds  to hundreds of picoseconds. “These processes have intrigued the photochemistry community for decades” says Prof. Daniel Rolles from Kansas State University “and it is now routinely possible to visualize electronic changes and the movement of atoms in the molecule at each step of a chemical reaction”.

Read more on the ELETTRA website

Image: Artistic rendering of the photo-induced ring opening of thiophenone (left) into several open-ring products (right). The thin white lines show smoothed paths of actual trajectories. Illustration: KSU, Daniel Roles.

Study at FLASH: XUV lasing from exploding noble-gas nanoclusters

New mechanism of XUV light amplification

An international team of scientists, headed by Nina Rohringer from DESY and Unversität Hamburg, has succeeded in getting bursts of laser-like extreme ultraviolet (XUV) emission from noble-gas clusters in the transient warm dense matter state. Xenon clusters were irradiated by DESY’s free-electron laser FLASH, and the resulting strongly amplified fluorescence signal was analysed by a high-resolution spectrometer. Theoretical modeling of the process indicates that the clusters, transformed to a nanometer-sized plasma (‘nanoplasma’), enable the creation of population inversion by means of electron-ion collisions. The transient but sizeable population inversion of the ensemble of clusters enables amplification of spontaneous emission in a single pass of the emitted XUV radiation. This study, performed at the CAMP station of the FLASH beamline BL1 at DESY, is published in Physical Review A and is highlighted as an Editors’ Suggestion.

>Read more on the FLASH website

Image: Excited noble-gas clusters stimulate lasting emission in the forward direction. (Credit: Original publication in Phys. Reb. A (2020))

Day of Light: 60th anniversary of the laser

The invention of the laser 60 years ago has transformed science and everyday life.

Sixty years after the first laser was operated on 16 May 1960 by Theodore Maiman at Hughes Research Laboratories in California, lasers have revolutionized everyday life as well as science. Lasers are also fundamental for research at the European XFEL. A public event on the European XFEL campus planned to celebrate this anniversary has been postponed to a later date.

When the world’s biggest X-ray laser and one of the planet’s brightest light sources, the European XFEL, started operation in 2017, it was the culmination of several decades of scientific progress in laser and X-ray laser technology. Lasers operating in the visible wavelength range were invented in the 1960s. In these lasers, radiation is generated from electron transitions in atoms or molecules. The light emitted is then continuously amplified between mirrors. This makes it comparatively easy to produce high-quality laser light, and many applications now shape our everyday lives. Examples range from impressive light installations, to high precision surgical instruments, broadband telecommunication, components in the electrical devices we carry in our pockets, and the laser pointer we use during presentations.

Read more on the XFEL website

Image: The optical laser system for pump-probe experiments in the laser lab.

Credit: European XFEL / Jan Hosan

Superfluorescent emission in the UV range

Free-electron laser FLASH coaxes superfluorescent emission from the noble gas xenon

Scientists have for the first time induced superfluorescence in the extreme ultraviolet range. Superfluorescence, or superradiance, could be used to build a laser that does not require an optical resonator. The team headed by DESY’s lead scientist Nina Rohringer used DESY’s free-electron laser FLASH to stimulate xenon, a noble gas, inside a narrow tube, causing it to emit coherent radiation, like a laser. The research team is now presenting its work in the journal Physical Review Letters.

“The phenomenon of superfluorescence was first discovered in the microwave range in the 1970s, and then demonstrated for infrared and optical wavelengths too,” explains Rohringer. “In the meantime, superfluorescence has also been observed in the X-ray domain, and at one time this mechanism was believed to be a promising candidate for building X-ray lasers. Until now, however, superfluorescence had not been demonstrated in the extreme ultraviolet, or XUV, range.”

In superfluorescence, the incident light is amplified and emitted along the axis of the medium as a narrow beam of coherent radiation, like in a laser. To produce superfluorescence in the XUV spectrum, the incoming light needs to have enough energy to knock the electrons out of the inner shell of the atoms that make up the lasing medium. Redistribution within the electron shell (Auger decay) leads to a situation in which more particles find themselves in an excited state than in an unexcited state. Physicists refer to this as population inversion.

>Read more on the FLASH at DESY website

Image: The xenon superfluorescence shows up as a bright line (yellow) superimposed on the averaged free-electron laser spectrum (purple, averaged over many shots).
Credit: European XFEL, Laurent Mercadier

When is a laser a real laser?

Pulsed lasers are intense and coherent light sources, and the latest category is that of Free Electron Lasers, such as FERMI. First order coherence is a familiar phenomenon, and is manifested for example in diffraction phenomena. This represents the correlation between the amplitudesof a wave at different points in space (transverse coherence) or time (longitudinal coherence.) However, a high degree of first order coherence is not enough to define a laser, according to the Nobel laureate Roy Glauber, who stated that a laser can be defined as a source that is coherent in all orders. The higher order correlations are between intensityat different points in time and space. How are these correlations measured? For this one has to look at the statistics of the photons.
Glauber’s work was inspired by the famous Hanbury Brown and Twiss experiment, in which coincidences of photons (i.e. correlations) were measured of photons coming from distant stars. By varying the distance between two detectors, they were able to determine the degree of coherence of the star, and extract other information. This is the key to measuring the second order coherence of a light source: the intensity of light at different points is measured in coincidence, and statistical analysis is made. This experiment is considered by many as initiating the whole field of quantum optics. Now a team led by Ivan Vartaniants (DESY, Hamburg, and the National Research Nuclear University, Moscow) has performed a Hanbury Brown and Twiss experiment at FERMI. Instead of the two discrete photodetectors used originally, a CCD detector was used. Since all of the photons arrive in less than 100 fs, there is no need to use coincidence methods: the signal is naturally synchronised.

>Read more on the FERMI at Elettra Sincrotrone Trieste website

Figure 1.  Difference between chaotic and coherent light sources. (a) photon correlation map for FERMI operated in seeded mode. (b) corresponding spectrum. (c) correlation map for FERMI operated in Self Amplified Stimulated Emission mode (the mode of operation of most Free Electron Lasers). (d) corresponding spectrum.
Credit: Reprinted from O. Yu. Gorobtsov et al, Nature Communications 9 (2018) 4498. (Copyright Nature Publishing Group)

Writing and deleting magnets with lasers

Scientists * have found a way to write and delete magnets in an alloy using a laser beam – a surprising effect.

* at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia in Charlottesville, USA

The reversibility of the process opens up new possibilities in the fields of material processing, optical technology, and data storage.
Researchers of the HZDR, an independent German research laboratory, studied an alloy of iron and aluminum. It is interesting as a prototype material because subtle changes to its atomic arrangement can completely transform its magnetic behavior. “The alloy possesses a highly ordered structure, with layers of iron atoms that are separated by aluminum atomic layers. When a laser beam destroys this order, the iron atoms are brought closer together and begin to behave like magnets,” says HZDR physicist Rantej Bali.

Bali and his team prepared a thin film of the alloy on top of transparent magnesia through which a laser beam was shone on the film. When they, together with researchers of the HZB, directed a well-focused laser beam with a pulse of 100 femtoseconds (a femtosecond is a millionth of a billionth of a second) at the alloy, a ferromagnetic area was formed. Shooting laser pulses at the same area again – this time at reduced laser intensity – was then used to delete the magnet.

>Read more on the Bessy II at HZB website

Image: Laser light for writing and erasing information – a strong laser pulse disrupts the arrangement of atoms in an alloy and creates magnetic structures (left). A second, weaker, laser pulse allows the atoms to return to their original lattice sites (right). (Find the entire image here)
Credit: Sander Münster / HZDR

Shedding new light on laser additive manufacturing

Additive manufacturing (AM, also known as 3D printing) allows us to create incredibly complex shapes, which would not be possible using traditional manufacturing techniques. However, objects created using AM have different properties from traditional manufacturing routes, which is sometimes a disadvantage.

Laser additive manufacturing (LAM) uses a laser to fuse together metallic, ceramic or other powders into complex 3D shapes, layer by layer. The cooling rates are extremely rapid, and since they are unlike conventional processes we don’t know the optimal conditions to obtain the best properties, delaying the uptake of LAM in the production of safety-critical engineering structures, such as turbine blades, energy storage and biomedical devices. We need a method to see inside the process of LAM to better understand and optimise the laser-matter interaction and powder consolidation mechanisms.

Based in the Research Complex at Harwell, a team of researchers have worked with scientists at I12, the Joint Engineering Environment Processing (JEEP) beamline and the Central Laser Facility to build a laser additive manufacturing machine which operates on a beamline, allowing you to see into the heart of the process, revealing the underlying physical phenomena during LAM.

>Read more on the Diamond Light Source website

Picture: The Additive Manufacturing Team from the Research Complex at Harwell on the Joint Engineering Environment Processing (JEEP, I12) beamline. The Laser Additive Manufacturing Process Replicator (or LAMPR) on the right is used to reveal the underlying physical phenomena during LAM.

Berkeley Lab delivers injector that will drive X-Ray laser upgrade

Unique device will create bunches of electrons to stimulate million-per-second X-ray pulses

 

Every powerful X-ray pulse produced for experiments at a next-generation laser project, now under construction, will start with a “spark” – a burst of electrons emitted when a pulse of ultraviolet light strikes a 1-millimeter-wide spot on a specially coated surface.

A team at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) designed and built a unique version of a device, called an injector gun, that can produce a steady stream of these electron bunches that will ultimately be used to produce brilliant X-ray laser pulses at a rapid-fire rate of up to 1 million per second.

The injector arrived Jan. 22 at SLAC National Accelerator Laboratory (SLAC) in Menlo Park, California, the site of the Linac Coherent Light Source II (LCLS-II), an X-ray free-electron laser project.

Getting up to speed

The injector will be one of the first operating pieces of the new X-ray laser. Initial testing of the injector will begin shortly after its installation.

The injector will feed electron bunches into a superconducting particle accelerator that must be supercooled to extremely low temperatures to conduct electricity with nearly zero loss. The accelerated electron bunches will then be used to produce X-ray laser pulses.

>Read more on the Advanced Light Source website

 Image: Joe Wallig, left, a mechanical engineering associate, and Brian Reynolds, a mechanical technician, work on the final assembly of the LCLS-II injector gun in a specially designed clean room at Berkeley Lab in August.
Credit: Marilyn Chung/Berkeley Lab

Superconducting X-Ray laser takes shape in Silicon Valley

The first cryomodule has arrived at SLAC

Linked together and chilled to nearly absolute zero, 37 of these segments will accelerate electrons to almost the speed of light and power an upgrade to the nation’s only X-ray free-electron laser facility.

An area known for high-tech gadgets and innovation will soon be home to an advanced superconducting X-ray laser that stretches 3 miles in length, built by a collaboration of national laboratories. On January 19, the first section of the machine’s new accelerator arrived by truck at SLAC National Accelerator Laboratory in Menlo Park after a cross-country journey that began in Batavia, Illinois, at Fermi National Accelerator Laboratory.

These 40-foot-long sections, called cryomodules, are building blocks for a major upgrade called LCLS-II that will amplify the performance of the lab’s X-ray free-electron laser, the Linac Coherent Light Source (LCLS).

 

>Read more on the Linac Coherent Light Source website

Photo credit: Fermilab / Jefferson Lab