New method allows to monitor fast movements at hard X-ray lasers.
A team of scientists from DESY, the Advanced Photon Source APS and National Accelerator Laboratory SLAC, both in the USA, have developed and integrated a new method for monitoring ultrafast movements of nanoscopic systems. With the light of the X-ray laser LCLS at the research center SLAC in California, they took images of the movements of nanoparticles taking only the billionth of a second (0,000 000 001 s). In their experiments now published in the journal Nature Communications they overcame the slowness of present-day two-dimensional X-ray detectors by splitting individual laser flashes of LCLS, delaying one half of it by a nanosecond and recording a single picture of the nanoparticle with these pairs of X-ray pulses. The tunable light splitter for hard X-rays which the scientists developed for these experiments enables this new technique to monitor movements of nanometer size fluctuations down to femtoseconds and at atomic resolution. For comparison: modern synchrotron radiation light sources like PETRA III at DESY can typically measure movements on millisecond timescales.
The intense light flashes of X-ray lasers are coherent which means that the waves of the monochromatic laser light propagate in phase to each other. Diffracting coherent light by a sample usually results in a so-called speckle diffraction pattern showing apparently randomly ordered light spots. However, this speckle is also a map of the sample arrangement, and movements of the sample constituents result in a different speckle pattern.
>Read more on the DESY website
Image: Scheme of the experiment: An autocorrelator developed at DESY splits the ultrashort X-ray laser pulses into two equal intensity pulses which arrive with a tunable delay at the sample. The speckle pattern of the sample is collected in a single exposure of the 2-D detector
Credit: W. Roseker/DESY