Empowering multicomponent cathode materials for sodium ion batteries

…by exploring three-dimensional compositional heterogeneities

Energy storage devices have revolutionized the modern electronics industry by enabling the widespread application of portable electronic devices. Moreover, these storage devices also have the potential to reduce the dependence on fossil fuels by implementing electric vehicles in the market. To date, lithium ion batteries have dominated the market because of the high energy density delivered by them. However, one should look into the sustenance of such devices because Li is not one of the most abundant metals on Earth’s crust. Thus, developing an alternative to lithium ion batteries has become one of the key issues to ensure the sustainable future of energy storage devices. Sodium ion batteries provide one such alternative. Out of all the components of a battery, cathode materials play one of the key roles in determining the overall performance of such batteries. Unfortunately, sodium-ion batteries have been lagging behind their lithium ion counterpart in terms of performance. Thus, new design strategies must be undertaken in order to improve the performance of cathode materials for sodium ion batteries.

>Read more on the SSRL at SLAC website

Image (extract): Three-dimensional elemental associations of pristine Na0.9Cu0.2Fe0.28Mn0.52O2 studied through transmission x-ray tomography. a) Visualizing the surface elemental associations at different angles with different colors corresponding to different association, and b) 2D cross-sectional association maps showing the bulk elemental associations. [Energy Environ. Sci., DOI: 10.1039/C8EE00309B (2018)] See entire figure here.