Ultralow-fluence for phase-change process

Ultrafast active materials with tunable properties are currently investigated for producing successful memory and data-processing devices. Among others, Phase-Change Materials (PCMs) are eligible for this purpose. They can reversibly switch between a high-conductive crystalline state (SET) and a low-conductive amorphous state (RESET), defining a binary code. The transformation is triggered by an electrical or optical pulse of different intensity and time duration. 3D Ge-Sb-Te based alloys, of different stoichiometry, are already employed in DVDs or Blu-Ray Disks, but they are expected to function also in non-volatile memories and RAM. The challenge is to demonstrate that the scalability to 2D, 1D up to 0D of the GST alloys improves the phase-change process in terms of lower power threshold and faster switching time. Nowadays, GST thin films and nanoparticles have been synthetized and have beenshown to function with competitive results.
A team of researchers from the University of Trieste and the MagneDyn beamline at Fermi demonstrated the optical switch from crystalline to amorphous state of Ge2Sb2Te5nanoparticles (GST NPs) with size <10 nm, produced via magnetron sputtering by collaborators from the University of Groeningen. Details were reported in the journal Nanoscale.
This work aims at showing the very low power limit of an optical pulse needed to amorphize crystalline Ge2Sb2Te5 nanoparticles. Particles of 7.8 nm and 10.4 nm diameter size were deposited on Mica and capped with ~200nm of PMMA. Researchers made use of a table-top Ti:Sapphire regenerative amplified system-available at the IDontKerr (IDK) laboratory (MagneDyn beamline support laboratory) to produce pump laser pulses at 400 nm, of ~100 fs and with a repetition rate from 1kHz to single shot.

>Read more on the Elettra Sincrotrone Trieste website

Image (extract): Trasmission Electron Microscopy image of the nanoparticles sample. Ultafast single-shot optical process with fs-pulse at 400 nm. Microscope images of amorphized and amorphized/ablated areas obtained on the nanoparticles sample. Comparison of amorphization threshold fluences between thin films and nanoparticles cases.
Please see here the entire image.