Unlocking the doors to effective COVID-19 treatments

Developing therapeutics for COVID-19 should lessen the length and severity of the illness, keeping more people out of the hospital and improving patient outcomes.

A team of interdisciplinary researchers from the Institut National de la Recherche Scientifique (INRS) are hoping to identify effective COVID-19 therapeutics. With help from the Canadian Light Source (CLS) at the University of Saskatchewan, the team has been able to visualize the interaction between inhibitory molecules and viral proteins. This allows researchers to see if their drug designs work as intended.

“We have libraries of molecular fragments and drug candidates that we are testing,” said Michael Maddalena, a research intern in Steven LaPlante’s lab at INRS. “We are screening to see if they are active and actually stick to the virus’ proteins or to essential human receptors where we think there are opportunities for drugs.”

This research targets the proteins of the SARS-CoV-2 virus that are involved in its replication and survival. Their work also targets the essential human receptors that the virus depends on to enter human cells. Drugs that stick to human receptors are unlikely to be susceptible to viral mutants — ensuring that new therapeutics will be effective against new variants.

Read more on the CLS website

Image: The LaPlante research team

X-rays get a grip on why erucamide slips

X-Ray Reflectivity measurements offer insights into a slippery industrial additive

Slip additives have a wide range of industrial uses, finding their way into everything from lubricants to healthcare products. Fatty acid amides have been used as slip additives since the 1960s, and erucamide is widely used in polymer manufacturing. Research into erucamide migration and distribution and its nanomechanical properties has shown that the assembly and performance of the slip-additive surface depend on concentration and application method, as well as the substrate surface chemistry. However, questions remain regarding the nanostructure of organised erucamide surface layers, including the molecular orientation of the outermost erucamide layer. In work recently published in the Journal of Colloid and Interface Science, a team of researchers from the University of Bristol and Procter & Gamble used a combination of techniques to investigate the erucamide nanostructure formed in a model system. Their findings will allow the use of rigorous scientific methods in real-world scenarios. 

Essential erucamide

Manufacturers use slip additives to modify the surface structure of a wide range of materials, reducing friction without compromising the material’s other properties (e.g. modulus). Slip additives are included in everything from food packaging and textiles, dyes and lubricants, to hygiene products such as nappies.

Read on the Diamond website

Image:Multiscale characterisation of polypropylene (PP) fibre vs polypropylene fibre + 1.5 % erucamide: (A) Optical microscopy, (B) Scanning Electron Microscopy, (C) Atomic Force Microscopy (height image)

The benefits of Open Data with ExPaNDS

Diamond is a key collaborator in this European project, which will be mapping the data behind the thousands of published scientific papers

ExPaNDS, alongside the Photon and Neutron Open Science Cloud (PaNOSC) are European H2020 projects who are working towards the development of the European Open Science Cloud (EOSC).

The Photon and Neutron Research Infrastructures (PaN RIs) containing free electron laser, synchrotron light and neutron sources are generating petabytes of research data each year and such vast amounts of data can be hard to share. Researchers around the globe use the data to advance knowledge across a variety of societal challenges. These challenges can be found in energy, transport, healthcare, food safety, and sustainable living to list only a few.

Understanding more about the ExPaNDS project

Diamond is a key collaborator in this European project, which will be mapping the data behind the thousands of published scientific papers

ExPaNDS is the European Open Science Cloud (EOSC) Photon and Neutron Data Service, which is a collaboration project between ten national Photon and Neutron Research Infrastructures (PAN RIs). This ambitious project will create opportunities for facilities’ users to access the data behind the thousands of successful published scientific papers generated by Europe’s PaN RIs – which every year create petabytes of data.
ExPaNDS will link all relevant data catalogues to ensure that any scientific research communities have access to both the raw data collected that is linked to their session(s) at these facilities, and the relevant peer review articles produced as a direct result of their usage.

The project brings together a network of ten national PaN RIs from across Europe as well as EGI, a federated e-Infrastructure set up to provide advanced computing services for research. In order to do this, ExPaNDS will develop a common ontology for all the elements of these catalogues, a roadmap for the back-end architecture, functionalities and a powerful taxonomy strategy in line with the requirement of the EOSC user community.

>Read more on the Diamond Light Source website
>Find more news on the ExPaNDS website

ExPaNDS presentation video

Five U.S. light sources form data solution task force

New collaboration between scientists at the five U.S. Department of Energy light source facilities will develop flexible software to easily process big data.

Light source facilities are tackling some of today’s biggest scientific challenges, from designing new quantum materials to revealing protein structures. But as these facilities continue to become more technologically advanced, processing the wealth of data they produce has become a challenge of its own. By 2028, the five U.S. Department of Energy (DOE) Office of Science light sources, will produce data at the exabyte scale, or on the order of billions of gigabytes, each year. Now, scientists have come together to develop synergistic software to solve that challenge.
With funding from DOE for a two-year pilot program, scientists from the five light sources have formed a Data Solution Task Force that will demonstrate, build, and implement software, cyberinfrastructure, and algorithms that address universal needs between all five facilities. These needs range from real-time data analysis capabilities to data storage and archival resources.
“It is exciting to see the progress that is being made by all the light sources working together to produce solutions that will be deployed across the whole DOE complex,” said Stuart Campbell, leader of the data acquisition, management and analysis group at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science user facility at DOE’s Brookhaven National Laboratory.

>Read more on the NSLS-II at Brookhaven National Lab

>Explore the other member facilities of the task force and read about their latest science news: Advanced Light Source (ALS), Advanced Photon Source (APS), Stanford Synchrotron Radiation Lightsource (SSRL), Linac Coherent Light Source (LCLS).

Image: Members of the task force met at NSLS-II for a project kickoff meeting in August of 2019.

European XFEL plans ultrahigh-speed network connection to Poland

Data from experiments will also be processed at partner institute NCBJ in Otwock-Świerk.

European XFEL and the National Center for Nuclear Research (NCBJ) in Otwock-Świerk near Warsaw plan to establish the first ultrahigh-speed connection for research data between Germany and Poland. The aim is for the new Supercomputing Center at NCBJ to be used for the processing and analysis of data generated at the European XFEL. The dedicated network connection between the DESY Computer Center, which hosts European XFEL’s primary data, and NCBJ will feature a data transfer rate of 100 gigabits per second (Gbit/s). With the exception of the higher-speed connection to DESY, that is approximately 100 times faster than the current typical Internet connection between European XFEL and other research institutes, through which the transfer of data for an average experiment at the facility would take about a month. In comparison, household high-speed Internet connections can typically manage about 250 Mbit/s for a download. This makes this new connection at least 400 times faster.
For the installation of the new high-speed data connection, the German National Research and Education Network (DFN), the Supercomputing and Networking Center at the Institute for Bioorganic Chemistry in Poznań (PSNC), the Research and Academic Computer Network National Research Institute (NASK), and Deutsches Elektronen-Synchrotron (DESY) will also take part alongside European XFEL and NCBJ. At the end of May this year, the partners signed a Memorandum of Understanding that will serve as the basis and starting point for establishing the new high-speed connection. It can largely be built on existing technical infrastructure, but certain specific components will have to be added. For example, the connection between the German and Polish research networks will be enabled by the European University Viadrina in Frankfurt an der Oder and the neighbouring Polish city of Słubice.

>Read more on the European XFEL website

Image: At European XFEL at peak user operation times, up to a petabyte of data can be produced per week.
Credit:  European XFEL / Jan Hosan

Feeling the strain: shear effects in magnetoelectric switching

Diamond uncovers unexpected complexity that may aid magnetoelectric data storage devices.

The high resolution and wealth of data provided by an experiment at Diamond can lead to unexpected discoveries. The piezoelectric properties of the ceramic perovskite PMN-PT (0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3) are widely used in commercial actuators, where the strain that is generated varies continuously with applied voltage. However, if the applied voltage is cycled appropriately then there are discontinuous changes of strain. These discontinuous changes can be used to drive magnetic switching in a thin overlying ferromagnet, permitting magnetic information to be written electrically. An international team of researchers used beamline I06 to investigate a ferromagnetic film of nickel when it served as a sensitive strain gauge for single-crystal PMN-PT. Their initial interpretation of the results suggested that ferroelectric domain switching rotated the magnetic domains in the film by the expected angle of 90°, but a closer examination revealed the true picture to be more complex. Their work, recently published in Nature Materials, shows that the ferroelectric domain switching rotated the magnetic domains in the film by considerably less than 90° due to an accompanying shear strain. The findings offer both a challenge and an opportunity for the design of next-generation data storage devices, and will surely be relevant if the work is extended to explore the electrically driven manipulation of more complex magnetic textures.

>Read more on the Diamond Light Source website

Image: Magnetic vector map (50 µm field of view) describing the magnetisation of a Ni film while applying 50 V across the ferroelectric substrate of PMN-PT. The colour wheel identifies magnetisation direction. Yellow and brown denotes regions whose magnetisation was unaffected by the voltage.

Electric skyrmions charge ahead for next-generation data storage

Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications.

When you toss a ball, what hand do you use? Left-handed people naturally throw with their left hand, and right-handed people with their right. This natural preference for one side versus the other is called handedness, and can be seen almost everywhere – from a glucose molecule whose atomic structure leans left, to a dog who shakes “hands” only with her right.

Handedness can be exhibited in chirality – where two objects, like a pair of gloves, can be mirror images of each other but cannot be superimposed on one another. Now a team of researchers led by Berkeley Lab has observed chirality for the first time in polar skyrmions – quasiparticles akin to tiny magnetic swirls – in a material with reversible electrical properties. The combination of polar skyrmions and these electrical properties could one day lead to applications such as more powerful data storage devices that continue to hold information – even after a device has been powered off. Their findings were reported this week in the journal Nature.

>Read more on the Advanced Light Source website

Image: Simulations of skyrmion bubbles and elongated skyrmions for the lead titanate/strontium titanate superlattice.
Credit: Berkeley Lab.

How to catch a magnetic monopole in the act

Berkeley Lab-led study could lead to smaller memory devices, microelectronics, and spintronics

A research team led by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has created a nanoscale “playground” on a chip that simulates the formation of exotic magnetic particles called monopoles. The study – published recently in Science Advances – could unlock the secrets to ever-smaller, more powerful memory devices, microelectronics, and next-generation hard drives that employ the power of magnetic spin to store data.

Follow the ‘ice rules’
For years, other researchers have been trying to create a real-world model of a magnetic monopole – a theoretical magnetic, subatomic particle that has a single north or south pole. These elusive particles can be simulated and observed by manufacturing artificial spin ice materials – large arrays of nanomagnets that have structures analogous to water ice – wherein the arrangement of atoms isn’t perfectly symmetrical, leading to residual north or south poles.

>Read more on the Advanced Light Source at Berkeley Lab website

Image: Full image here. This  nanoscale “playground” on a chip uses nanomagnets to simulate the formation of exotic magnetic particles called “monopoles.” Credit: Farhan/Berkeley Lab

H2020 project PaNOSC officially started

The project PaNOSC, Photon and Neutron Open Science Cloud, is one of five cluster projects funded under the European H2020 programme.

The project, which will run until December 2022, is coordinated by the ESRF and brings together six strategic European research infrastructures.

Large-scale research infrastructures produce a huge amount of scientific data on a daily basis. For their storage and future (re)use, data need to managed according to the FAIR principles, i.e., be Findable, Accessible, Interoperable and Re-usable. The adaptation and development of both policies and technologies are key to making FAIR data a reality and to serving the broad set of stakeholders who will benefit from a coherent ecosystem of data services.

Under the headline “European Open Science Cloud (EOSC)”, projects covering a wide range of scientific disciplines from physics, astronomy, and life sciences, to social sciences and humanities, have been funded by the European Commission to build and develop the EOSC, which includes a comprehensive catalogue of services for the storage, management, analysis and re-use of research data.

>Read more on the ESRF website
>To know more about PaNOSC ( Photon and Neutron Open Science Cloud ) please read here

Extremely small magnetic nanostructures with invisibility cloak

Future data storage technology

In novel concepts of magnetic data storage, it is intended to send small magnetic bits back and forth in a chip structure, store them densely packed and read them out later. The magnetic stray field generates problems when trying to generate particularly tiny bits. Now, researchers at the Max Born Institute (MBI), the Massachusetts Institute of Technology (MIT) and DESY were able to put an “invisibility cloak” over the magnetic structures. In this fashion, the magnetic stray field can be reduced, allowing for small yet mobile bits. The results were published in Nature Nanotechnology.

For physicists, magnetism is intimately coupled to rotating motion of electrons in atoms. Orbiting around the atomic nucleus as well as around their own axis, electrons generate the magnetic moment of the atom. The magnetic stray field associated with that magnetic moment is the property we know from e.g. a bar magnet we use to fix notes on pinboard. It is also the magnetic stray field that is used to read the information from a magnetic hard disk drive. In today’s hard disks, a single magnetic bit has a size of about 15 x 45 nanometer, about 1.000.000.000.000 of those would fit on a stamp.

One vision for a novel concept to store data magnetically is to send the magnetic bits back and forth in a memory chip via current pulses, in order to store them at a suitable place in the chip and retrieve them later. Here, the magnetic stray field is a bit of a curse, as it prevents that the bits can be made smaller for even denser packing of the information. On the other hand, the magnetic moment underlying the stray field is required to be able to move the structures around.

>Read more on the PETRA III at DESY website

Credit: MIT, L. Caretta/M. Huang [Source]

Ultralow-fluence for phase-change process

Ultrafast active materials with tunable properties are currently investigated for producing successful memory and data-processing devices. Among others, Phase-Change Materials (PCMs) are eligible for this purpose. They can reversibly switch between a high-conductive crystalline state (SET) and a low-conductive amorphous state (RESET), defining a binary code. The transformation is triggered by an electrical or optical pulse of different intensity and time duration. 3D Ge-Sb-Te based alloys, of different stoichiometry, are already employed in DVDs or Blu-Ray Disks, but they are expected to function also in non-volatile memories and RAM. The challenge is to demonstrate that the scalability to 2D, 1D up to 0D of the GST alloys improves the phase-change process in terms of lower power threshold and faster switching time. Nowadays, GST thin films and nanoparticles have been synthetized and have beenshown to function with competitive results.
A team of researchers from the University of Trieste and the MagneDyn beamline at Fermi demonstrated the optical switch from crystalline to amorphous state of Ge2Sb2Te5nanoparticles (GST NPs) with size <10 nm, produced via magnetron sputtering by collaborators from the University of Groeningen. Details were reported in the journal Nanoscale.
This work aims at showing the very low power limit of an optical pulse needed to amorphize crystalline Ge2Sb2Te5 nanoparticles. Particles of 7.8 nm and 10.4 nm diameter size were deposited on Mica and capped with ~200nm of PMMA. Researchers made use of a table-top Ti:Sapphire regenerative amplified system-available at the IDontKerr (IDK) laboratory (MagneDyn beamline support laboratory) to produce pump laser pulses at 400 nm, of ~100 fs and with a repetition rate from 1kHz to single shot.

>Read more on the Elettra Sincrotrone Trieste website

Image (extract): Trasmission Electron Microscopy image of the nanoparticles sample. Ultafast single-shot optical process with fs-pulse at 400 nm. Microscope images of amorphized and amorphized/ablated areas obtained on the nanoparticles sample. Comparison of amorphization threshold fluences between thin films and nanoparticles cases.
Please see here the entire image.

Real-time ptychographic data streaming

CAMERA/ALS/STROBE Collaboration yields novel image data workflow pipeline.

What began nearly a decade ago as a Berkeley Lab Laboratory-Directed Research and Development (LDRD) proposal is now a reality, and it is already changing the way scientists run experiments at the Advanced Light Source (ALS)—and, eventually, other light sources across the Department of Energy (DOE) complex—by enabling real-time streaming of ptychographic image data in a production environment.

In scientific experiments, ptychographic imaging combines scanning microscopy with diffraction measurements to characterize the structure and properties of matter and materials. While the method has been around for some 50 years, broad utilization has been hampered by the fact that the experimental process was slow and the computational processing of the data to produce a reconstructed image was expensive. But in recent years advances in detectors and x-ray microscopes at light sources such as the ALS have made it possible to measure a ptychographic dataset in seconds.

>Read more on the Berkeley Lab website

Picture: The modular, scalable Nanosurveyor II system—now up and running at the ALS—employs a two-sided infrastructure that integrates the ptychographic image data acquisition, preprocessing, transmission and visualization processes.

Scientists use machine learning to speed discovery of metallic glass

In a new report, they combine artificial intelligence and accelerated experiments to discover potential alternatives to steel in a fraction of the time.

Blend two or three metals together and you get an alloy that usually looks and acts like a metal, with its atoms arranged in rigid geometric patterns.

But once in a while, under just the right conditions, you get something entirely new: a futuristic alloy called metallic glass that’s amorphous, with its atoms arranged every which way, much like the atoms of the glass in a window. Its glassy nature makes it stronger and lighter than today’s best steel, plus it stands up better to corrosion and wear.

Even though metallic glass shows a lot of promise as a protective coating and alternative to steel, only a few thousand of the millions of possible combinations of ingredients have been evaluated over the past 50 years, and only a handful developed to the point that they may become useful.

Now a group led by scientists at the Department of Energy’s SLAC National Accelerator Laboratory, the National Institute of Standards and Technology (NIST) and Northwestern University has reported a shortcut for discovering and improving metallic glass – and, by extension, other elusive materials – at a fraction of the time and cost.

>Read more on the SLAC website

Image: Fang Ren, who developed algorithms to analyze data on the fly while a postdoctoral scholar at SLAC, at a Stanford Synchrotron Radiation Lightsource beamline where the system has been put to use.
Credit: Dawn Harmer/SLAC National Accelerator Laboratory

10 out of 10

Diamond will have processed 10 petabytes of data over its 10 years of research and innovation.

Today, on the 10th day of the 10th month of the year, Diamond will have processed 10 petabytes of data over its 10 years of research and innovation. To put this into perspective, 10 petabytes (1 x 1016 bytes) is equivalent to over 2 million DVDs, 200 million four-draw filing cabinet filled with text, the entire memory of four human brains or 20,000 years of MP3 songs playing continuously.

Collected during experiments on over 30 beamlines and integrated facilities, in the past 10 years Diamond data has fostered breakthroughs in fields ranging from health, the environment and engineering to astrophysics and archaeology. And new beamlines, improved capabilities and growing numbers of users mean that Diamond is processing more data than ever before. In fact, Diamond’s Data Acquisition team processed almost 2 petabytes of data – a fifth of all data processed at Diamond during its working lifetime – in 2016 alone.