Liquid carbon can be disclosed if one is ultrafast enough

At the FERMI FEL, beamline EIS-TIMEX, a novel approach combining FEL and fs-laser radiation has been developed for generating liquid carbon under controlled conditions and monitoring its properties of at the atomic scale. The method has been put to the test depositing a huge amount (5 eV/atom, 40 MJ/kg) of optical energy delivered by an ultrashort laser pulse (less than 100 fs, 10-13 s) into a self-standing amorphous carbon foil (a-C, thickness about 80 nm) and subsequently probing the excited sample volume with the FEL pulse varying both the FEL photon energy across the C K-edge (~ 283 eV) and delay between FEL and laser. A time-resolved x-ray absorption spectroscopy (tr-XAS, Fig. 2a) has been obtained of l-C with a record time resolution of less than 100 fs.

This method allowed researchers to monitor the formation of the liquid carbon phase at a temperature of 14200 K and pressure of 0.5 Mbar occurring in about 300 fs after absorption of the laser pump pulse as an effect of the constant volume (isochoric) heating of the carbon sample.

Read more on the ELETTRA website

Image: Artistic image illustrating the ultrafast laser-heating process used to generate liquid carbon in the laboratory. Illustration: Emiliano Principi.