ESRF and UCL scientists awarded Chan Zuckerberg Initiative grant for human organ imaging project

The project, named “Anatomical to cellular synchrotron imaging of the whole human body”, promises to develop a transformational X-ray tomography technology that will enable the scanning of a whole human body with resolution of 25 microns, thinner than a human hair – tens of times the resolution of a CT scanner. Further, it can then zoom into local areas with cellular-level imaging, or one micron – over 100x better resolution than a CT scanner. This imaging project is based on the recent Extremely Brilliant Source (EBS) upgrade to the ESRF that has created the world’s first high-energy fourth-generation synchrotron, which is currently the brightest X-ray source in the world. Feasibility studies have already demonstrated it can resolve unprecedented detail revealing the damage caused by COVID-19 on human lungs, linking from the major airways all the way down to the finest micro-vasculature in an intact lung.

The project is led by an international multidisciplinary team of synchrotron imaging scientists (at UCL and ESRF), mathematicians and computer scientists (at UCL) and medics (at Hannover-biobank, Mainz and Heidelberg), brought together to image deep-tissue in COVID-19-injured organs.

Read more on the ESRF website

Image: Paul Tafforeau, ESRF scientist imaging the complete brain and lung of a COVID-19 victim using HiP-CT at the ESRF-EBS, the world’s brightest X-ray source. By resolving cellular features (ca. one-micron resolution) in local areas we hope to help determine if COVID-19 affects the vasculature in the organs.
Credit: ESRF