The early bird got to fly: Archaeopteryx was an active flyer

Was Archaeopteryx capable of flying, and if so, how?

The question of whether the Late Jurassic dino-bird Archaeopteryx was an elaborately feathered ground dweller, a glider, or an active flyer has fascinated palaeontologists for decades. Valuable new information obtained with state-of-the-art synchrotron microtomography at the ESRF, the European Synchrotron (Grenoble, France), allowed an international team of scientists to answer this question in Nature Communications. The wing bones of Archaeopteryx were shaped for incidental active flight, but not for the advanced style of flying mastered by today’s birds.

Was Archaeopteryx capable of flying, and if so, how? Although it is common knowledge that modern-day birds descended from extinct dinosaurs, many questions on their early evolution and the development of avian flight remain unanswered. Traditional research methods have thus far been unable to answer the question whether Archaeopteryx flew or not. Using synchrotron microtomography at the ESRF’s beamline ID19 to probe inside Archaeopteryx fossils, an international team of scientists from the ESRF, Palacký University, Czech Republic, CNRS and Sorbonne University, France, Uppsala University, Sweden, and Bürgermeister-Müller-Museum Solnhofen, Germany, shed new light on this earliest of birds.

>Read more on the European Synchrotron website

Image: The Munich specimen of the transitional bird Archaeopteryx. It preserves a partial skull (top left), shoulder girdle and both wings slightly raised up (most left to center left), the ribcage (center), and the pelvic girdle and both legs in a “cycling” posture (right); all connected by the vertebral column from the neck (top left, under the skull) to the tip of the tail (most right). Imprints of its wing feathers are visible radiating from below the shoulder and vague imprints of the tail plumage can be recognised extending from the tip of the tail.
Credits: ESRF/Pascal Goetgheluck

Natalie Larson awarded

She received the Neville B. Smith Student Poster Prize

Natalie Larson, a current ALS doctoral fellow from UC Santa Barbara, won the first prize Neville B. Smith Student Poster Award at the 2017 ALS User Meeting. Larson’s winning poster—”In-situ x-ray computed tomography of defect evolution during polymer impregnation and pyrolysis processing of ceramic matrix composites”—featured the first two big in situ experiments she performed at Beamline 8.3.2.

Larson has been an ALS user since 2014 and became a doctoral fellow in 2016. She’ll continue at the ALS for about another year through a National Science Foundation fellowship that will see her through the end of her PhD. The primary focus of her work is developing high-temperature ceramic matrix composites (CMCs) for more efficient jet engines. Larson works with Beamline Scientists Dula Parkinson and Alastair MacDowell and Project Scientist Harold Barnard on developing experiments for in situ x-ray computed tomography experiments to observe 3D real-time defect formation in CMCs.