AI Agent Helps Identify Material Properties Faster

High-throughput X-ray diffraction measurements generate huge amounts of data. The agent renders them usable more quickly.

Artificial intelligence (AI) can analyse large amounts of data, such as those generated when analysing the properties of potential new materials, faster than humans. However, such systems often tend to make definitive decisions even in the face of uncertainty; they overestimate themselves. An international research team has stopped AI from doing this: the researchers have refined an algorithm so that it works together with humans and supports decision-making processes. As a result, promising new materials can be identified more quickly.

A team headed by Dr. Phillip M. Maffettone (currently at National Synchrotron Light Source II in Upton, USA) and Professor Andrew Cooper from the Department of Chemistry and Materials Innovation Factory at the University of Liverpool joined forces with the Bochum-based group headed by Lars Banko and Professor Alfred Ludwig from the Chair of Materials Discovery and Interfaces and Yury Lysogorskiy from the Interdisciplinary Centre for Advanced Materials Simulation. The international team published their report in the journal Nature Computational Science from 19 April 2021.

Read more on the BNL website

Image: Daniel Olds (left) and Phillip M. Maffettone working at the beamline.

Credit: BNL