Massive fragment screen points way to new SARS-CoV-2 inhibitors

Experiment with 2533 fragments compounds generates chemical map to future antiviral agents 

New research published in Science Advances provides a template for how to develop directly-acting antivirals with novel modes of action, that would combat COVID-19 by suppressing the SARS-CoV-2 viral infection. The study focused on the macrodomain part of the Nsp3 gene product that SARS-CoV-2 uses to suppress the host cell’s natural antiviral response. This part of the virus’s machinery, also known as Mac1, is essential for its reproduction: previous studies have shown that viruses that lack it cannot replicate in human cells, suggesting that blocking it with a drug would have the same effect.  

The study involved a crystallographic fragment screen of the Nsp3 Mac1 protein by an open science collaboration between researchers from the University of Oxford, the XChem platform at Diamond, and researchers from the QCRG Structural Biology Consortium at the University of California San Francisco.  The international effort discovered 234 fragment compounds that directly bind to sites of interest on the surface of the protein, and map out chemical motifs and protein-compound interactions that researchers and pharmaceutical companies can draw on to design compounds that could be developed into antiviral drugs.  This work is thus foundational for preparing for future pandemics.   

Read more on the Diamond website

Image: Principal Beamline Scientist on I04-1, Frank von Delft

Credit: Diamond Light Source