A star is born

Swiss Light Source SLS reveals complex chemistry inside ‘stellar nurseries’

An international team of researchers has uncovered what might be a critical step in the chemical evolution of molecules in cosmic “stellar nurseries.” In these vast clouds of cold gas and dust in space, trillions of molecules swirl together over millions of years. The collapse of these interstellar clouds eventually gives rise to young stars and planets.

Like human bodies, stellar nurseries contain a lot of organic molecules, which are made up mostly of carbon and hydrogen atoms. The group’s results, published in the journal Nature Astronomy, reveal how certain large organic molecules may form inside these clouds. It’s one tiny step in the eons-long chemical journey that carbon atoms undergo—forming in the hearts of dying stars, then becoming part of planets, living organisms on Earth and perhaps beyond.

“In these cold molecular clouds, you’re creating the first building blocks that will, in the end, form stars and planets,” said Jordy Bouwman, research associate at the Laboratory for Atmospheric and Space Physics (LASP) and assistant professor in the Department of Chemistry at University Colorado Boulder.

For the new study, Bouwman and his colleagues took a deep dive into one stellar nursery in particular: the Taurus Molecular Cloud (TMC-1). This region sits in the constellation Taurus and is roughly 440 light years (more than 2 quadrillion miles) from Earth. The chemically complex environment is an example of what astronomers call an “accreting starless core.” Its cloud has begun to collapse, but scientists haven’t yet detected embryonic stars emerging inside it.

Read more on the PSI website

Image: Using PEPICO spectroscopy at the SLS, researchers discovered how hexagonally-shaped ortho-benzyne molecules can combine with methyl radicals to form a series of larger organic molecules, each containing a ring of five carbon atoms.

Credit: Henry Cardwell

A toothy temporal map of Arctic climate change

In the vast, remoteness of the Arctic, few have the opportunity to gather data on the environmental conditions over time or decipher the long-term effects of climate change. What is required? A considerable period to observe, a nearly autonomous method or actor for collection, a robust character to withstand the harsh surroundings. Researchers from Aarhus University in Denmark are tackling this issue through an interdisciplinary NordForsk project. At DanMAX beamline, the group will analyse a narwhal tusk to determine its chemical composition and biomineralization, both important potential markers of the changing environment.

Significant, accelerated signs of climate change have been reported in the Arctic and Antarctic zones, which research shows impact global climate. Scientists are looking at different ways to interpret the terrestrial and oceanic changes occurring in these areas, and how the change affects native wildlife. The described NordForsk project, developed by researchers from Denmark, Greenland and Sweden, seeks to elucidate the structure and formation of the narwhal tusk, and map the full life history of the animal through the growth lines along the full length of the tusk.

Read more on the MAX IV website

Image: Peter A. S. Vibe readies samples of the tusk at DanMAX beamline. 

Credit: MAX IV Laboratory