Using soil to combat climate change

Researchers are using synchrotron light to better understand the impact of climate change on more than three trillion metric tonnes of soil carbon around the world.

Using the Canadian Light Source (CLS) at the University of Saskatchewan, scientists from across the United States investigated the plant root mechanisms that control long-term storage of carbon in deep soil. Their findings will have ramifications for global industries such as agriculture, which have touted the benefits of carbon sequestration as their contribution to fighting climate change.

“The significance of our work is we not only show that plants are conduits of carbon into the soil, but the roots also regulate how much carbon the deep soil can store or lose,” said Dr. Marco Keiluweit, a biogeochemist at the Stockbridge School of Agriculture in the University of Massachusetts.

>Read more on the Canadian Light Source website

Image: Rhizogenic weathering extract; (full image here)

Using reed waste for sustainable batteries

With the changing climate, researchers are focusing on finding sustainable alternatives to conventional fuel cells and battery designs. Traditional catalysts used in vehicles contribute to increasing carbon dioxide emissions and mining for materials used in their design has a negative impact on the environment. Prof. Shuhui Sun, a researcher from the Institut National de la Recherche Scientifique (INRS) in Montreal, and his team used the Canadian Light Source (CLS) at the University of Saskatchewan to investigate an Iron-Nitrogen-Carbon catalyst using reed waste.

They hope to use the bio-based materials to create high-performance fuel cells and metal-air batteries, which could be used in electric cars. “An efficient oxygen electrocatalyst is extremely important for the development of high-performance electrochemical energy conversion and storage devices. Currently, the rare and expensive Pt-based catalysts are commonly used in these devices. Therefore, developing highly efficient and low-cost non-precious metal (e.g., Fe-based) catalysts to facilitate a sluggish cathodic oxygen reduction reaction (ORR) is a key issue for metal air batteries and fuel cells,” said Qilang Wei, the first author of the paper.

>Read more on the Canadian Light Source website

A step closer to smart catalysts for fuel generation

Researchers at the Universidade Federal do Rio Grande do Sul in Brazil in collaboration with the ALBA Synchrotron have performed the first detailed measurement of the strong metal-support interaction (SMSI) effect in Cu-Ni nanoparticles supported on cerium oxide.

A better understanding of this effect is essential for developing smart catalysts that are more selective, stable and sustainable. The quest for the best catalysts in industry has been a long one, but a new study by Universidade Federal do Rio Grande do Sul in Brazil, in collaboration with the ALBA Synchrotron, has come a step closer. For the first time, researchers have found evidence of what could be the origin of the SMSI effect in catalysts supported on cerium oxide.

Catalysts are used to increase the reaction rate of a given chemical reaction, and have applications in a wide variety of fields. In heterogeneous catalysis, the catalyst is usually composed of metal nanoparticles supported on metal oxides. Among them, CeO2-based catalysts have unique structural and atomic properties that make them suitable in the cutting-edge environmental industry of fuel cells and hydrogen. In this field, they are being explored as high-end photocatalytic reactors for the thermal splitting of water and carbon dioxide. However, what has been termed as the SMSI effect can undermine their desired properties.

>Read more on the ALBA website

Image: (extract, full picture here) Near Ambient Pressure – X-ray Photoemission Spectroscopy allowed the identification of the chemical components of the nanoparticles in situ.

Enhancing solar energy production

Research investigates ways to convert titanium dioxide into a new photoactive material in the visible light range.

The search for clean and renewable energy sources has intensified in recent years due to the increase in atmospheric concentration of greenhouse gases and the consequent increase in the average temperature of the planet. One such alternative source is the conversion of sunlight into electricity through photovoltaic panels. The efficiency in this conversion depends on the intrinsic properties of the materials used in the manufacturing of the panels, and it increases year by year with the discovery of new and better materials. As such, solar energy is expected to become one of the main sources of electric energy by the middle of this century, according to the International Energy Agency (IEA).

Titanium dioxide (TiO2) is an abundant, nontoxic, biologically inert and chemically stable material, known primarily as a white pigment used in paints, cosmetics and even toothpastes. TiO2 is also often used in sunscreens since it is especially capable of absorbing radiation in the ultraviolet region. However, this same property severely limits the use of TiO2 for solar energy conversion, since the ultraviolet emission comprises only 5 to 8% of the total energy of the solar light.

Can this TiO2 property be extended to the visible light region to increase the conversion of sunlight into electricity? To answer this question, Maria Pilar de Lara-Castells et al. [1] conducted an innovative research in which they discuss how a special treatment can change the optical properties of TiO2.

>Read more on the Brazilian Synchrotron Light Laboratory website

Why having your head in the clouds could be a really good thing

The ATMOS research group in the NANOMO unit, led by Nønne Prisle, Associate Professor at the University of Oulu, are trying to find out what kind of chemistry is happening in cloud droplets and tiny nanometer-sized aerosol particles in the atmosphere. This knowledge could eventually, hopefully, give us more accurate theoretical models to understand the ongoing climate change.
– The only thing that can halter climate change is to stop emitting CO2. Nønne Prisle is very, very clear on that. Even so, she says, if we want to take any other step to try to counter climate change, we really need to know what’s going on in the clouds since these processes could be quite critical.
The ATMOS team are using the beamline HIPPIE at MAX IV being so-called commissioning experts, which means that the experiment is done both to provide useful data but also to verify the capacity and capability of the beamline experimental station.

>Read more on the MAX IV Laboratory website

Image: From left to right: Robert Seidel, Helmholtz Zentrum Berlin; Nønne Prisle, Kamal Raj and Jack Lin, University of Oulu at the HIPPIE beamline.

Scientist discover that charcoal traps ammonia pollution

Discovery could have implications for agricultural management and climate change mitigation

Cornell University scientists Rachel Hestrin and Johannes Lehmann, along with collaborators from Canada and Australia, have shown that charcoal can mop up large quantities of nitrogen from the air pollutant ammonia, resulting in a potential slow-release fertilizer with more nitrogen than most animal manures or other natural soil amendments. The results were published Friday in Nature Communications.

Ammonia is a common component of agricultural fertilizers and provides a bioavailable form of the essential nutrient nitrogen to plants. However, ammonia is also a highly reactive gas that can combine with other air pollutants to create particles that travel deep into the lungs, leading to a host of respiratory issues. It also indirectly contributes to climate change when excess fertilizer inputs to soil are converted into nitrous oxide, a potent greenhouse gas.

In Canada, ammonia emissions have increased by 22 per cent since 1990, and 90 per cent are produced by agriculture, particularly from manures, slurries and fertilizer applications. Mitigating this pollutantwithout limiting fertilizers and food growth for our growing world populationis key to a sustainable future.

>Read more on the Canadian Light Source website

Image: Rachel Hestrin (right) on the beamlines at Canadian Light Source with fellow Cornell researcher Angela Possinger.

Demonstrating a new approach to lithium-ion batteries

A team of researchers from the University of Cambridge, Diamond Light Source and Argonne National Laboratory in the US have demonstrated a new approach that could fast-track the development of lithium-ion batteries that are both high-powered and fast-charging.

In a bid to tackle rising air pollution, the UK government has banned the sale of new diesel and petrol vehicles from 2040, and the race is on to develop high performance batteries for electric vehicles that can be charged in minutes, not hours. The rechargeable battery technology of choice is currently lithium-ion (Li-ion), and the power output and recharging time of Li-ion batteries are dependent on how ions and electrons move between the battery electrodes and electrolyte. In particular, the Li-ion diffusion rate provides a fundamental limitation to the rate at which a battery can be charged and discharged.

>Read more on the Diamond Light Source website

One size does not fit all when exploring how carbon in soil affects the climate

Scientists from Stanford University are opening a window into soil organic carbon, a critical component of the global carbon cycle and climate change.

“We have to know what kind of carbon is in soil in order to understand where the carbon comes from and where it will go,” said Hsiao-Tieh Hsu, a PhD student in chemistry at Stanford University and a member of a Kate Maher’s research group.

The natural fluxes of soil organic carbon, the exchange of carbon moving from vegetation to the soil and recycled by microorganisms before being stabilized in the soil or returned to the atmosphere, is 10 to 20 times higher than human emissions. Even the smallest change in the flux of soil organic carbon would have a huge impact on the climate.

Soil organic carbon occurs naturally and is part of the carbon cycle. Through photosynthesis, plants absorb carbon dioxide from the atmosphere. As plants and their roots decompose, they deposit organic carbon in the soil. Microorganisms, decomposing animals, animal feces and minerals also contribute to the organic carbon in the soil. In turn, plants and microorganisms “eat” that carbon, which is an essential nutrient.

All of this results in different “flavours” or compounds within the soil, say Hsu and Maher, who is also a faculty member of the Stanford Center for Carbon Storage.

>Read more on the Canadian Light Source website

Image: Members of the research team at the East River, Colorado, field site (left to right): Hsiao-Tieh Hsu; Grace Rainaldi, Stanford undergraduate; Corey Lawrence, research geologist at United States Geological Survey; Kate Maher; Matthew Winnick, Stanford postdoctoral fellow.
Credit: Kate Maher.

Putting CO2 to a good use

One of the biggest culprits of climate change is an overabundance of carbon dioxide in the atmosphere.

As the world tries to find solutions to reverse the problem, scientists from Swansea University have found a way of using CO2 to create ethylene, a key chemical precursor. They have used ID03 to test their hypotheses.

Carbon dioxide is essential for the survival of animals and plants. However, people are the biggest producers of CO2 emissions. The extensive use of fossil fuels such as coal, oil, or natural gas has created an excess of CO2 in the atmosphere, leading to global warming. Considerable research focuses on capturing and storing harmful carbon dioxide emissions. But an alternative to expensive long-term storage is to use the captured CO2 as a resource to make useful materials.

>Read more on the European Synchrotron wesbite

Solution to plastic pollution on the horizon

Engineering a unique plastic-degrading enzyme

The inner workings of a recently discovered bacterium with a fascinating ability to use plastic as an energy source have been recently revealed in PNAS. The world’s unique Long-Wavelength Macromolecular Crystallography (MX) beamline here at Diamond Light Source was used to successfully solve the structure of the bacterial enzyme responsible for chopping up the plastic. This newly evolved enzyme could be the key to tackling the worldwide problem of plastic waste.

Plastic pollution is a global threat that desperately needs addressing. Plastics are rarely biodegradable and they can remain in the environment for centuries. One of the most abundant plastics that contributes hugely to this dire situation is poly(ethylene terephthalate) (PET).

PET is used largely in textiles, where it is commonly referred to as polyester, but it is also used as packaging for liquids and foodstuffs. In fact, PET’s excellent water-repellent properties led to it being the plastic of choice for soft drink bottles. However, once plastic bottles are discarded in the environment the water resistance of PET means that they are highly resistant to natural biodegradation. PET bottles can linger for hundreds of years and plastic waste like this will accumulate over time unless a solution is found to degrade them.

A recent breakthrough came in the discovery of a unique bacterium, Ideonella sakaiensis 201-F6, which was found feeding on waste from an industrial PET recycling facility. PET has only been widely used since the 1970s, so the bacterium had evolved at breakneck speed to be able to take advantage of the new food source.

The bacterium had the amazing ability to degrade PET and use it to provide carbon for energy. Central to this ability was the production of a PET-digesting enzyme, known as PETase.

>Read more on the Diamond Light Source website

 

Climate change and its effects on Rocky Mountain alpine lakes

Alpine lakes in the Rocky Mountains are important biological hot spots of that ecosystem. These lakes do not have enough nutrients to support large amounts of aquatic life because of the cold climate in the surrounding watershed. Rather, the lakes are home to oligotrophs, organisms that grow slowly and can survive in harsh aquatic environments. The lakes also host a variety of cold-water fish, such as trout, that are preyed upon by birds, including osprey and bald eagles.

Researchers from University of Wyoming, U.S. Geological Survey, and the Canadian Light Source conducted experiments at the CLS on the fine dust that is deposited to the Rocky Mountains to learn more about how the alpine lakes could be affected by climate change. They looked specifically at phosphorus in dust and how it is made available to the organisms in the cold lakes and streams, because phosphorus is one of the major limiting nutrients, and its availability could affect the functions and properties of alpine lake ecosystems.

>Read more on the Canadian Light Source website

 

Converting CO2 into usable energy

Scientists show that single nickel atoms are an efficient, cost-effective catalyst for converting carbon dioxide into useful chemicals.

Imagine if carbon dioxide (CO2) could easily be converted into usable energy. Every time you breathe or drive a motor vehicle, you would produce a key ingredient for generating fuels. Like photosynthesis in plants, we could turn CO2 into molecules that are essential for day-to-day life. Now, scientists are one step closer.

Researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory are part of a scientific collaboration that has identified a new electrocatalyst that efficiently converts CO2 to carbon monoxide (CO), a highly energetic molecule. Their findings were published on Feb. 1 in Energy & Environmental Science.

“There are many ways to use CO,” said Eli Stavitski, a scientist at Brookhaven and an author on the paper. “You can react it with water to produce energy-rich hydrogen gas, or with hydrogen to produce useful chemicals, such as hydrocarbons or alcohols. If there were a sustainable, cost-efficient route to transform CO2 to CO, it would benefit society greatly.”

>Read more on the NSLS-II website

Image: Brookhaven scientists are pictured at NSLS-II beamline 8-ID, where they used ultra-bright x-ray light to “see” the chemical complexity of a new catalytic material. Pictured from left to right are Klaus Attenkofer, Dong Su, Sooyeon Hwang, and Eli Stavitski.

 

Unraveling the Complexities of Auto-Oxidation

Study reveals mechanism in spruce tree that causes growth

While it’s common knowledge that trees grow when days start to become longer in the springtime and stop growing when days become shorter in the fall, exactly how this happens has not been well understood.

Now, scientists using the Canadian Light Source are offering insights into the mechanisms of how certain cells in the winter buds of Norway spruce respond to changes in seasonal light, affecting growth. The research was published in Frontiers in Plant Science.

Such knowledge allows for better predictions of how trees might respond to climate change, which could bring freezing temperatures while daylight is still long or warmer temperatures when daylight is short.

Professor Jorunn E. Olsen and YeonKyeong Lee, plant scientists at the Norwegian University of Life Sciences, along with colleagues from the University of Saskatchewan investigated winter bud cells from Norway spruce and how they differ with respect to the amount of daylight to which they were exposed.

>Read more on the Candian Light Source website

Image (from left to right, extract): plant with terminal winter bud after short day exposure for three weeks; plant with brown bud scales after short day exposure for eight weeks; plant showing bud break and new growth three weeks after re-transfer to long days following eight weeks under short days. Entire picture here.

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials

Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials

Light-emitting diodes (LEDs) traditionally demand atomic perfection to optimize efficiency. On the nanoscale, where structures span just billionths of a meter, defects should be avoided at all costs—until now.

A team of scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Stony Brook University has discovered that subtle imperfections can dramatically increase the efficiency and ultraviolet (UV) light output of certain LED materials.

“The results are surprising and completely counterintuitive,” said Brookhaven Lab scientist Mingzhao Liu, the senior author on the study. “These almost imperceptible flaws, which turned out to be missing oxygen in the surface of zinc oxide nanowires, actually enhance performance. This revelation may inspire new nanomaterial designs far beyond LEDs that would otherwise have been reflexively dismissed.”

>Read more on the NSLS-II website

Image: The research team, front to back and left to right: Danhua Yan, Mingzhao Liu, Klaus Attenkoffer, Jiajie Cen, Dario Stacciola, Wenrui Zhang, Jerzy Sadowski, Eli Stavitski.

 

The power of Metal-Organic Frameworks

Trapping nuclear waste at the molecular level

Nuclear power currently supplies just over 10% of the world’s electricity. However one factor hindering its wider implementation is the confinement of dangerous substances produced during the nuclear waste disposal process. One such bi-product of the disposal process is airborne radioactive iodine that, if ingested, poses a significant health risk to humans.  The need for a high capacity, stable iodine store that has a minimised system volume is apparent – and this collaborative research project may have found a solution.

Researchers have successfully used ultra-stable MOFs to confine large amounts of iodine to an exceptionally dense area. A number of complementary experimental techniques, including measurements taken at Diamond Light Source and ISIS Neutron and Muon Source, were coupled with theoretical modelling to understand the interaction of iodine within the MOF pores at the molecular level.

High resolution x-ray powder diffraction (PXRD) data were collected at Diamond’s I11 beamline. The stability and evolution of the MOF pore was monitored as the iodine was loaded into the structure. Comparison of the loaded and empty samples revealed the framework not only adsorbed but retained the iodine within its structure.

>Read more on the Diamond Light Source website

Illustration: Airborne radioactive iodine is one of the bi-products of the nuclear waste disposal process. A recent study involving Diamond Light Source and ISIS Neutron and Muon Source showed how MOFs can capture and store iodine which may have implications for the future confinement of these hazardous substances.