X-rays look at nuclear fuel cladding with new detail

Micro-beam measurements at the Swiss Light Source SLS have enabled insights into the crystal structure of hydrides that promote cracks in nuclear fuel cladding. This fundamental knowledge of the material properties of cladding will help assess safety during storage.

For over seventy years, zirconium alloys have been used as cladding for nuclear fuel rods. This cladding provides a structural support for the nuclear fuel pellets and an initial barrier to stop fission products escaping into the reactor water during operation. During its long history, which includes extensive research and development advances, reactor type zirconium alloys have proved themselves as an extremely successful material for this application.

Yet they have a well-known nemesis: hydrogen. When submerged in water during operation in a reactor, at the hot surface of the fuel rod water molecules split into hydrogen and oxygen. Some of this hydrogen then diffuses into the cladding. It makes its way through the cladding until – when the concentration and conditions are right – it precipitates to form chemical compounds known as zirconium-hydrides. These hydrides make the material brittle and prone to cracking. Now, using the Swiss Light Source SLS, researchers were able to shed new light on the interplay between cracking and hydride formation.

Using a technique called synchrotron micro-beam X-ray diffraction, the researchers could study the structure of hydrides during the growth of cracks in fuel cladding at a new level of detail. “Through thermomechanical tests, we could control extremely slow crack propagations. Discovering at such high spatial resolution which hydride formations actually occurred made all the challenges of the material preparation worthwhile,” says study first author, Aaron Colldeweih who designed the thermomechanical testing procedure as part of his PhD project at PSI.

One of the things they discovered was that an unexpected type of hydride was present at the crack tip. This type of hydride, known as gamma-hydride has a slightly different crystal structure and stoichiometry to the type more commonly present, known as delta-hydride, “There has been a lot of discussion about gamma-hydrides: whether they are stable and whether they exist at all. Here we could show that with certain applied stresses you create gamma-hydrides that are stable,” says Johannes Bertsch, who leads the Nuclear Fuels Group in the Laboratory of Nuclear Materials at PSI.

Read more on the PSI website

Image: Malgorzata Makowska, scientist at the MicroXAS beamline of the SLS, carefully positions a standard material for setup calibration on the sample manipulator in front of the X-ray beam.

Credit: Paul Scherrer Institute / Mahir Dzambegovic

Looking into the heart of an antibiotic killer

β-lactam-based antibiotics currently account for about 65% of all applied antibiotics, due to their broad-spectrum of activity and favorable safety profile, making this class of drugs the most common clinical approach for treating bacterial infections. Examples of these drugs, which contain a β-lactam ring in their structure, include naturally occurring penicillins, and synthetic cephalosporins, monobactams, and carbapenems. Antibiotics with a β-lactam core target bacterial transpeptidases—enzymes necessary for cell-wall synthesis—and they block the formation of cross-bridges between adjacent peptidoglycan chains, leading to bacterial death. Overuse of β-lactam antibiotics has led to an increase in microorganisms with multidrug resistance. In β-lactam antibiotics, this resistance is driven primarily by bacterial enzymes called b-lactamases. Researchers have now revealed the crystal structure, binding, and cleavage of moxalactam antibiotic bound to L1 metallo-β-lactamase (MBL) from the emerging pathogen Stenotrophomonas maltophilia using the U.S. Department of Energy’s Advanced Photon Source (APS). Drug discovery based on the details captured in this study could contribute key information to counteract antimicrobial resistance and provide tools in future pandemics. The results were published in the journal Nature Communications.

Read more on the APS website

Image: Fig. 1. TR-SSX crystal structure of moxalactam of the active site of L1 MBL, L1 active site structure at 150 ms with hydrolyzed moxalactam (in yellow-red-blue), zinc (magenta) and protein residues (in silver-blue-red).