Measuring drug-induced molecular changes within a cell at sub-wavelength scale
Synchrotron InfraRed Nanospectroscopy has been used for the first time to measure biomolecular changes induced by a drug (amiodarone) within human cells (macrophages) and localized at 100 nanometre scale, i.e. two orders of magnitude smaller than the IR wavelength used as probe. This was achieved at the Multimode InfraRed Imaging and Micro Spectroscopy (MIRIAM) beamline (B22) at Diamond Light Source, the UK’s national synchrotron facility.
This is a major scientific result in Life Sciences shared by an international team made up of researchers from the School of Cancer and Pharmaceutical Science at Kings College London, the Department of Pharmaceutical Technology and Bio-pharmacy at University of Vienna, and the scientists of the MIRIAM B22 beamline at Diamond.
Read more on the Diamond website
Image: Schematic of Synchrotron photo-thermal IR nano-spectroscopy on mammalian cell at beamline B22.