A welcoming and friendly community awaits!

Challenges are part of daily life at a synchrotron. In his #LightSourceSelfie, Tomasz talks about the importance of flexibility and how teams work together, adjusting to overcome challenges and get things done. When describing the synchrotron community, Tomasz says, “I think it is one of the most welcoming and friendly communities I have ever met.” Tomasz is driven by curiosity and the need to help others. He says, “Light sources are a nice combination of both because I can actually help people to solve their problems, their interesting scientific problems, and this gives me the everyday fulfilment.”

After over a decade working in infrared spectroscopy, Tomasz is excited that SOLARIS now has funding to construct an infrared beamline that will allow scientists to do cutting edge infrared imaging experiments of cells and tissues primarily for cancer diagnostics and understanding of biological systems.

To find out more about SOLARIS, visit https://lightsources.org/lightsources-of-the-world/europe/synchrotron-solaris/

A powerful infrared technique broadens its horizons

Infrared light has the right energy range to probe many interesting material properties, including the vibrational modes of molecules and the way electrons interact with external photons. As devices get smaller and faster, the ability to study the way light and matter interact at the nanoscale will become crucial for the development of quantum and microelectronic technologies.

A powerful infrared method for probing such phenomena is called scattering-type scanning near-field optical microscopy (s-SNOM), which uses the tip of an atomic force microscope (AFM) to focus infrared light down to about 10 nm, below the wavelength of the light itself (i.e., below the diffraction limit). However, because of the elongated geometry of the AFM tip, oriented perpendicular to the sample, s-SNOM is less sensitive to features of interest that lie parallel to the sample surface.

“Probing in-plane responses at the subwavelength scale has been a long-time hurdle for the technique,” said Ziheng Yao, a former ALS doctoral fellow and co-first author of a Nature Communications paper that reports on a way around this hurdle. “With our results, we can get not only the the top view of the object, but also the side views.”

At ALS Beamline 2.4, the researchers used s-SNOM to study samples of sapphire and LiNbO3, two well-characterized, prototypical materials suitable for a proof-of-concept demonstration. Both have a property (the dielectric function) that varies along different in-plane crystal axes.

Read more on the ALS website

Image: Schematic of the s-SNOM nanospectroscopy setup and the crystal orientation of the sample (a, b, and c axes). Red arrow indicates the in-plane component of the incident light, kin-plane. Rotating the sample changes θ, the angle between kin-plane and the c-axis. Inset: Image of the gold disk on sapphire (m-cut Al2O3). Sdark and Sbright are the two locations were spectra were collected. Scale bar = 1 µm.

Credit: Xinzhong Chen and Ziheng Yao/Stony Brook University

Secrets of spider web strength revealed

An international collaboration between the University of MelbourneUniversity of Bayreuth and ANSTO’s Australian Synchrotron provides the first insights into how the rare silk of the Australian basket-web spider retains its strength and resilient structure— allowing the spider to make a robust and rather exquisite silken basket.  

The silk is so firm and remarkable that it enables the basket web to maintain its structural integrity without any support from the surrounding vegetation.

The insights into physical and chemical properties of this basket-web silk may be useful for the production of artificial spider silks, which have already shown strong potential as an advanced biomimetic material in textile and medical applications.

“The biochemical makeup of the silk thread cross-section, particularly secondary protein structures and complex carbohydrates, was examined on the Infrared Microspectroscopy (IRM) beamline at the Australian Synchrotron,” said beamline scientist and co-author, Dr Pimm Vongsvivut.

Read more on the ANSTO website

Image: Credit:  Hanyl et al, “Free-standing spider silk webs of the thomisid Saccodomus Formivorus are made of composites comprising micro- and submicron fibers,” Scientific Reports10, 17624 (2020)

World first for Synchrotron InfraRed Photo-Thermal in Life NanoSciences

Measuring drug-induced molecular changes within a cell at sub-wavelength scale

Synchrotron InfraRed Nanospectroscopy has been used for the first time to measure biomolecular changes induced by a drug (amiodarone) within human cells (macrophages) and localized at 100 nanometre scale, i.e. two orders of magnitude smaller than the IR wavelength used as probe. This was achieved at the Multimode InfraRed Imaging and Micro Spectroscopy (MIRIAM) beamline (B22) at Diamond Light Source, the UK’s national synchrotron facility.

This is a major scientific result in Life Sciences shared by an international team made up of researchers from the School of Cancer and Pharmaceutical Science at Kings College London, the Department of Pharmaceutical Technology and Bio-pharmacy at University of Vienna, and the scientists of the MIRIAM B22 beamline at Diamond.

Read more on the Diamond website

Image: Schematic of Synchrotron photo-thermal IR nano-spectroscopy on mammalian cell at beamline B22.

Protecting chickens from heart disease

The health and welfare of broiler chickens may improve thanks to University of Saskatchewan (USask) researcher Andrew Olkowski and colleagues.

More chickens are raised worldwide than any other livestock animal, so improving their health outcomes would have a big impact.

The broiler chickens that are raised for meat were genetically selected to grow extremely fast, but they often suffer from heart diseases. Heart pump failure is a major health and welfare issue for the broiler chicken industry worldwide. Globally, economic losses associated with heart failure problems in broiler chickens amount to more than $1 billion annually.  

To understand why fast-growing broiler chickens suffer from heart problems, Olkowski and collaborators compared them with their slower-growing broiler counterparts, which have a much lower risk of heart failure, and with Leghorn chickens, which are resistant to heart failure.

Read more on the Canadian Light Source website

Image: University of Saskatchewan researcher Andrew Olkowski. 

Discovery could lead to stronger dental fillings…and less time at the dentist

An international team of researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to discover how to create stronger dental fillings. This is great news for the estimated 96 per cent of Canadians who will have to contend with at least one cavity during their adult lives.

For the first time, an international group of researchers led by Professor Owen Addison from King’s College London has been able to close a gap in the knowledge of photo-activated resin-based composites, commonly used in medical and dental applications.

In a recent paper published in Nature Communications, the team from Alberta, the United Kingdom, Norway and the United States described how they saw inside the resin matrix and gained insight into how filler particles interact with it during setting and influence the dental filling materials.

Read more on the Canadian Light Source website

Image : Prof. Owen Addison (right) with co-author Dr. Dan Romanyk, from the University of Alberta, at the MidIR beamline at the CLS, which they used for their experiment.