Riverine iron survives salty exit to sea

Iron organic complexes in Sweden’s boreal rivers significantly contribute to increased iron concentration in open marine waters, X-ray spectroscopy data shows. A Lund University study in Biogeosciences characterizes the role of salinity for iron-loading in estuarine zones, a factor which underpins intensifying seasonal algal blooms in the Baltic Sea.

The study ties in with a reported trend of increased riverine iron concentrations over the last decade in North America, northern Europe and in particular, Swedish and Finnish rivers. This, in conjunction with a predicted rise in extreme weather events in Scandinavia due to climate change, provides momentum for more bioavailable iron to enter marine environments such as the Baltic Sea.

“The consequences of increasing riverine iron for the receiving [marine] system depend first and foremost on the fate of iron in the estuarine salinity gradient. We had questions on what factors determine the movement and transport capacity of iron in these boreal rivers,” said Simon Herzog, postdoctoral researcher at Lund University.

The research group investigated the iron discharge in eight boreal rivers in Sweden which drain into the Baltic Sea, a brackish marine system. Water samples were taken upstream and at the river mouths, the latter just before estuarine mixing and stronger saline conditions occur. Spring and autumn specimens enabled the comparative analysis of flow conditions. To determine the type and amounts of iron species, measurements with X-ray absorbance spectroscopy (XAS) were taken at beamline I811 at Max-lab in Lund, Sweden and X-ray Absorption Near-Edge Structure (XANES) spectra at beamline ID26 at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

Read more on the MAX IV website

Image: A view of the Ore River in northern Sweden

Credit: Simon Herzog